## Noble gas accumulation in deep aquifers: Insights into <sup>40</sup>Ar accompanied by He isotopes

KERSTIN L. URBACH<sup>1</sup>, JAKOB K. BRINKMANN<sup>1</sup>, ROI RAM<sup>1,2</sup>, ALAN M. SELTZER<sup>3</sup>, ITAY J. REZNIK<sup>2</sup>, WEI JIANG<sup>4</sup>, ZHENG-TIAN LU<sup>4</sup>, JENNIFER C. MCINTOSH<sup>5</sup>, CHANDLER NOYES<sup>5</sup>, REBECCA TYNE<sup>6</sup>, ANDY LOVE<sup>7</sup>, EDDIE W. BANKS<sup>7</sup>, JUSTIN T. KULONGOSKI<sup>8</sup> AND WERNER AESCHBACH<sup>1</sup>

Noble gas isotopes, such as the radioactive 81Kr and radiogenic <sup>4</sup>He [1] and <sup>40</sup>Ar [2], are useful tracers for old (10<sup>4</sup>– 10<sup>5</sup>-yr-order) groundwater, providing possible insights into groundwater residence time, water rock interaction and mixing processes. Together, they can help to deconvolute complex groundwater systems. These tracers undergo distinct processes enabling age estimation. 81Kr can be utilized to date groundwater on timescales between approximately 50-1000 ka due to its radioactive decay, while the stable isotopes 40Ar and 4He accumulate from the radioactive decay in rocks and subsequent release into the liquid phase. Furthermore, while excess <sup>4</sup>He (4He<sub>ex</sub>) in old groundwater can be quantified using 'traditional' mass spectrometry [1], excess <sup>40</sup>Ar (<sup>40</sup>Ar<sub>ex</sub>) is largely masked by the atmospheric input and difficult to detect. This study builds upon recent developments in measurement techniques [2,3], which enable quantification of <sup>40</sup>Ar<sub>ex</sub> in old (<sup>81</sup>Kr-depleted) groundwater from the northern tip of the Red Sea.

High <sup>4</sup>He<sub>ex</sub> combined with <sup>40</sup>Ar<sub>ex</sub> of up to ~6% relative to the atmospheric-derived background, were identified in the hundreds-of-meters deep Nubian Sandstone Furthermore, <sup>3</sup>He and <sup>4</sup>He supported by Ne measurements allow the differentiation of crustal and mantle influence. All samples are dominated by terrigenic He, with mantle He contributing to up to 3.5% of this component. While 40Ar<sub>ex</sub> shows no clear correlation with 81Kr, it strongly correlates with 3Heex. This suggests that 40Ar<sub>ex</sub> largely reflects mantle input rather than insitu accumulation from potassium decay in aquifer minerals. This hypothesis is corroborated and expanded upon by several new, unpublished datasets from other parts of the world [4-6], which show a tight coupling between <sup>3</sup>He<sub>ex</sub> and <sup>40</sup>Ar<sub>ex</sub>. We hypothesize that radiogenic <sup>40</sup>Ar is readily released from minerals at high temperatures, such as in the mantle, but is largely unreleased from colder crustal minerals.

[1] Purtschert et al. (2023), Science of The Total Environment

859, 159886.

- [2] Seltzer et al. (2021), Chemical Geology 583, 120458.
- [3] Seltzer & Bekaert (2022), International Journal of Mass Spectrometry 478, 116873.
  - [4] Noyes et al. (in review), Water Resources Research.
  - [5] Tyne et al. (in review), Nature Geoscience.
  - [6] Kulongoski et al. (2003), Chemical Geology 202, 95-113.

<sup>&</sup>lt;sup>1</sup>Institute of Environmental Physics, Heidelberg University

<sup>&</sup>lt;sup>2</sup>Geological Survey of Israel

<sup>&</sup>lt;sup>3</sup>Woods Hole Oceanographic Institution

<sup>&</sup>lt;sup>4</sup>University of Science and Technology of China

<sup>&</sup>lt;sup>5</sup>University of Arizona

<sup>&</sup>lt;sup>6</sup>University of Manchester

<sup>&</sup>lt;sup>7</sup>Flinders University

<sup>&</sup>lt;sup>8</sup>Scripps Institution of Oceanography, UCSD