Evaporation of Cr, Mo, W and P from lunar silicate melts at 1 bar at different temperatures, oxygen-, and water fugacities

JULIAN VILLAMIZAR BLANCO AND PAOLO A. SOSSI ETH Zürich

Condensation of elements from the solar gas in the early Solar System and their evaporation during its post-nebular phase, have shaped the chemical budgets of terrestrial planets [1-3]. In particular, the Group VI elements, Cr, Mo and W are noteworthy for having stable oxide gas species, and therefore could have behaved in a volatile manner at conditions relevant to the formation of the Moon [3-4]. Previous experimental studies were performed in mixtures of CO-CO₂ gases at 1 atmosphere (atm), yet, in H-bearing systems such as that of the primitive Moon or solar nebula, the evaporation of hydroxide species is expected. Accordingly, we have performed 1 atm experiments in CO₂-H₂-Ar mixtures in vertical-tube- and aerodynamic levitation furnaces in which synthetic lunar silicate glasses doped with 1000 ppm of Cr, Mo, W and P were heated between 1400- and 2200 °C and fO₂ ranging from 2 log₁₀ units below the Fayalite-Magnetite-Quartz (FMQ) buffer to air (10^{-0.68} bar). We show that, at constant temperature and run duration, Cr becomes more volatile at higher fO2, while P shows the opposite behaviour. On the other hand, Mo and W are least volatile at around $\Delta FMQ = +2$ and become more volatile at both higher- and lower fO₂. This behaviour can be rationalised by the change in partial pressures of the stable hydroxide- and oxide gas species at different fO₂ and fH2O, depending on the stoichiometry of the evaporation reaction with the general form $M^{x+n}O_{(x+n)/2}(1) + (x/6)H_2O(g) =$ $O_{x/3}M^x(OH)_{x/3}(g) + (n/4)O_2$. We expand on the theoretical framework of [3] to quantify evaporation loss as a function of T, fO₂, time and water fugacity (fH₂O). The relative losses of Group VI elements from planetary bodies can be used to constrain the fugacity of H₂O in the vapour phase during their evaporation from silicate liquids, thereby distinguishing nebular- from postnebular environments.

- [1] Norris, C. A., & Wood, B. J. (2017). Nature, 549(7673), 507-510.
 - [2] Hin, R. C. et al. (2017). Nature, 549(7673), 511-515.
- [3] Sossi, P. A. et al. (2019). *Geochimica et Cosmochimica Acta*, 260, 204-231.

[4] O'Neill, H. St. C. (1991). Geochimica et Cosmochimica Acta, 55(4), 1135-1157.