¹⁷O_{excess} in Soreq Cave Speleothems

AHINOAM ASSOR, HAGIT P. AFFEK AND EUGENI BARKAN

The Fredy & Nadine Herrmann Institute of Earth Sciences, the Hebrew University of Jerusalem

Speleothems d¹⁸O is a common tool that provides information about regional paleoclimate. However, d¹⁸O depends on both the temperature and the water isotopic composition, making it difficult to partition these parameters. Even when temperature is constrained by clumped isotopes, d¹⁸O of cave water reflects a complex combination of hydrological several processes. The new proxy ¹⁷O_{excess} can provide additional paleo hydrological information. ¹⁷O_{excess} is defined as the deviation of d¹⁷O from a generally accepted ¹⁷O-¹⁸O mass dependent reference line. In carbonates, it records mostly the ¹⁷O_{excess} of the parent water. In the case of rainfall, ¹⁷O_{excess} varies with normalized relative humidity in the region of moisture formation, with lower relative humidity corresponding to higher ¹⁷O_{excess} in the rainfall. As such, ¹⁷O_{excess} is analogous to rainfall d-excess.

Here, we measure $^{17}\mathrm{O}_{\mathrm{excess}}$ in ancient speleothems from Soreq Cave (Israel). The Soreq Cave speleothem record provides continuous information about the climate in the last 250 ky, through the measurements of $^{18}\mathrm{O}$ and $^{18}\mathrm{O}$ and $^{18}\mathrm{O}$ and $^{18}\mathrm{O}$ and $^{18}\mathrm{O}$ are reconstruct temperature and rainfall $^{18}\mathrm{O}$. $^{17}\mathrm{O}_{\mathrm{excess}}$ values of paleo rainwater were reconstructed from $^{17}\mathrm{O}_{\mathrm{excess}}$ in Soreq Cave speleothems, at an age range of 0-160 ka, using samples that were mostly previously measured for clumped isotopes. Using the expected $^{17}\mathrm{O}_{\mathrm{excess}}$ values for a range of the modern trajectories of Mediterranean cyclones, we estimate possible storm trajectories and relative humidity in the past. Most samples fall within the range of the modern trajectories, with a tendency to more Westerly track, with higher relative humidity, during the last Glacial. $^{17}\mathrm{O}_{\mathrm{excess}}$ in the LGM, on the other hand, indicated low relative humidity.