Quantifying the rate of olivine dissolution in the CO₂-rich fluid phase for engineered mineral carbon storage.

MOHAMED SALEH, DR. ATEFEH VAFAIE, PHD., NIHAL M. DARRAJ, MARY RYAN, MARTIN TRUSLER AND SAM KREVOR

Imperial College London

Engineered carbon dioxide mineralisation in basaltic rocks is emerging as a promising strategy for permanently trapping CO2 as a thermodynamically stable solid. The overall efficiency of this process is critically dependent on the rate of mineral dissolution, which is considered the rate-limiting step in carbonation. While most investigations have focused on fluidrock reactions in CO2-saturated aqueous solutions, our work explores a novel reaction regime relevant to subsurface storage: water-saturated CO2. In our study, we introduce an innovative flow-through experimental design that quantifies the dissolution kinetics of forsteritic olivine grains (a highly reactive basaltic mineral) under two contrasting conditions—CO₂-saturated water versus water-saturated liquid CO2 flow. This approach provides the first direct quantitative comparison of reaction rates between these environments. Complementary micro-CT X-ray imaging is used to map fluid-rock interfacial areas within the olivine beadpack, allowing for further constraints on the reaction kinetics within the multi-phase fluid system. Together, these techniques offer a robust toolset for assessing the impact of fluid phase composition on subsurface mineral carbonation processes. Our findings provide critical insights that could inform novel CO₂ injection methods and improve the overall design of engineered carbon sequestration systems. This work contributes to a deeper understanding of the geochemical processes underpinning subsurface mineral carbonation, paving the way for more effective long-term carbon storage solutions.