Real-Time Detection of H₂, He, and ²²²Rn while Drilling: A Key Tool for Natural Gas Exploration – Insights from the ICDP DIVE-1 Boreholes

HUGO DUTOIT¹, LAURENT TRUCHE², FRÉDÉRIC VICTOR DONZÉ³, THOMAS WIERSBERG⁴, MAI-LINH DOAN², JUNJIAN LI⁵, ANDREW GREENWOOD⁵, EVA CASPARI⁵, NICOLAS LEFEUVRE⁶, JESSY DOMINIQUE⁷, SARAH AUCLAIR², LORELLA MASCI³, GYÖRGY HETENYI⁸, MARCO VENIER⁹ AND OTHMAR MÜNTENER¹⁰

The identification and real-time monitoring of geofluids during drilling are essential for ensuring safe operations and gaining valuable insights into reservoir properties and fluid migration. While mud gas logging is a well-established technique in oil and gas exploration, the growing interest in natural hydrogen (H₂) and helium (He) exploration has highlighted the need for advanced mud gas logging methods, particularly for continuous wireline coring in crystalline bedrock. Detecting both H₂ and He is particularly valuable not only for exploring these resources but also for identifying deep fluid migration, especially in crystalline formations. This study presents mud gas logging results for ${\rm O_2},\,{\rm N_2},\,{}^{40}{\rm Ar},\,{}^{38}{\rm Ar},\,{}^{36}{\rm Ar},\,{\rm CO_2},\,{\rm CH_4},\,{\rm H_2},\,{\rm He},\,{\rm and}\,\,{}^{222}{\rm Rn}$ from two boreholes (909.5 m and 578.5 m deep) drilled in the Ivrea-Verbano Zone (Northern Italy) as part of the DIVE-ICDP project. Comparison with geophysical logging data revealed that gas peaks correlate strongly with variations in the physical characteristics of well fluids, indicating zones of fluid inflow. Real-time gas monitoring proved valuable for detecting deep gas migration and supporting decision-making, positioning it as a promising tool for targeting He or H₂ in crystalline bedrock especially in regions with limited surface indicators. However, challenges remain, such as distinguishing between formationderived and drilling-induced gases. Despite these challenges, the correlations of He and H2 with other gases, lithology and structural features offer preliminary insights into their potential origins, reinforcing the value of this method for exploring H₂ and He in deep geological formations.

¹University Grenoble Alpes - CNRS

²ISTerre, University Grenoble Alpes

³University Grenoble Alpes

⁴International Continental Scientific Drilling Program ICDP

⁵Montanuniversität Leoben

⁶Laboratoire des Fluides Complexes et leurs Réservoirs LFCR UMR 5150, IPRA, Université de Pau et des Pays de l'Adour

⁷Laboratoire Magmas et Volcans

⁸Institute of Earth Sciences, University of Lausanne (UNIL), Lausanne, Switzerland

⁹Institut für Geowissenschaften, Johannes Gutenberg-Universität Mainz, Germany

¹⁰University of Lausanne