Organic carbon dynamics in pigmented algal blooms on the Greenland Ice Sheet surface

DR. PAMELA E. ROSSEL¹, RUNA ANTONY^{1,2}, REY MOUROT^{1,3}, THORSTEN DITTMAR^{4,5}, ALEX ANESIO⁶, MARTYN TRANTER⁶ AND **LIANE G. BENNING**¹

Pigmented algae colonizing the snow and ice darken the surface of glaciers and ice sheets, enhancing light absorption and accelerating melting. On the Greenland Ice Sheet (GrIS) meltwater availability further promotes snow and glacial icealgae blooms. The amount and composition of the organic matter (OM) in these blooms are modulated by the relationship between carbon-fixing algae and carbon-respiring heterotrophic microorganisms. Until now, the OM variability from these algaedominated habitats on the GrIS remains unclear. We address this knowledge gap by incubating algae-dominated snow and ice surface samples in situ under light and dark conditions. We evaluated the initial microbial community composition in the snow and ice samples via 16S and 18S rRNA gene sequencing and evaluated the molecular variability of both dissolved and particulate OM (DOM and POM), with help of ultrahighresolution Fourier transform ion cyclotron resonance mass spectrometry. We demonstrate that habitats dominated by the glacier ice-algae Ancylonema have a higher abundance of highly unsaturated and aromatic compounds, resistant to bio- and photodegradation. In contrast, habitats dominated by the snow-algae Chloromonas, are enriched in bioavailable and more photosensitive unsaturated aliphatics and sulfur- and phosphorusbearing compounds. Light exposure increased water-soluble DOM compounds derived from POM, that represented large proportion of the initial DOM composition of both algae habitats. Of these initial DOM pools, up to 50% were heterotrophically degraded in the dark, while light alone photodegraded less than 20%. The substantial accumulation of light-absorbing aromatics in both POM and DOM at the end of the ice-algae incubations, demonstrates the greater effect of ice-algae on altering glacier color compared to snow-algae, and consequently on decreasing glacier albedo and accelerating melting.

¹GFZ Helmholtz Centre for Geosciences

²National Centre for Polar and Ocean Research, Ministry of Earth Sciences

³Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO

⁴Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg

⁵Helmholtz Institute for Functional Marine Biodiversity (HIFMB)

⁶Aarhus University