[4] Piccoli et al. (2019) Scientific Reports, 9(1), 19573

[5] Eberhard et al. (2023) Journal of Petrology, 64(10)

Ferric iron systematics of coexisting silicate and oxide minerals in hydrated metaperidotites with progressive subduction

JULIA DIETRICH 1 , THOMAS PETTKE 1 , GUILLAUME BONNET 2 , LISA EBERHARD 3 , PIERRE LEFEBVRE 4 AND RUBEN KRETZSCHMAR 5

Hydrated metaperidotites convey large amounts of minerallattice bound water to subduction zone depths exceeding ~ 50 km [1] and exhibit a high capacity to oxidize other reservoirs, quantified by their redox budget [2]. With progressive subduction, hydrated metaperidotites undergo dehydration, and current models postulate a dominant partitiontioning of the redox budget into the dehydration fluid which is thought to represent the oxidizing agent for arc magmas [3]. However, recent studies challenge this paradigm, stating that the oxidation state of subducted hydrated metaperidotites is commonly too low to stabilize oxidized species in the dehydration fluid [4, 5].

To address this controversy surrounding redox budget cycling, we have undertaken a comprehensive study on Fe³⁺ - Fe²⁺ systematics in bulk rocks and silicate mineral separates formed upon metaperidotite dehydration, because iron is the most abundant, redox-sensitive element in these rocks. Metaperidotite samples from the central Swiss Alps were characterised in detail for their petrogenesis and preserve mineral assemblages formed upon antigorite breakdown (olivine + chlorite + orthopyroxene ± magnetite \pm rare hematite). Antigorite dehydration product rocks are further distinguished into three groups based on fO2 (expressed relative to the QFM buffer): highly (QFM + 3.5), moderately (QFM + 3.0) and weakly oxidized (QFM + 1.0). Bulk rock ⁵⁷Fe Mössbauer spectroscopy data reveal that from highly to weakly oxidized conditions, 35 - 4% of the total Fe is Fe³⁺, with silicate minerals hosting 6 – 100% of the bulk Fe³⁺. Mössbauer data on mineral separates identify chlorite as the main silicate Fe³⁺ carrier with 35% Fe³⁺ in one highly oxidized sample and 15% Fe³⁺ in one moderately oxidized sample, before orthopyroxene ($\sim 2\% \text{ Fe}^{3+}$) and olivine ($< \text{LOD} - 1\% \text{ Fe}^{3+}$). Following antigorite dehydration, a large fraction of the redox budget hence remains rock-bound and is subducted further, possibly accounting for comparatively oxidised source domains in the convecting mantle.

References:

- [1] Ulmer & Trommsdorff (1995) *Science*, 268(5212), 858–861
 - [2] Evans (2006) Geology, 34(6), 489
 - [3] Birner et al. (2017) Journal of Petrology, 58(9), 1755-

¹University of Bern

²Sorbonne université

³Utrecht University

⁴ETH Zurich

⁵Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich