New perspectives on the carbon isotope chemostratigraphy of the late Ediacaran Corumbá Group, Brazil, from GRIND-ECT drill cores and their links to biological innovations

HENRIQUE ALBUQUERQUE FERNANDES¹, GUSTAVO M. PAULA-SANTOS², LUIZ GUSTAVO PEREIRA¹, THALES PESCARINI³, ERIC M ELIAS², CAROLINA BEDOYA-RUEDA¹, VINICIUS CARDOSO-LUCAS¹, LIGIA STAMA¹, SERGIO CAETANO-FILHO¹, MARLY BABINSKI⁴, PAULO CÉSAR BOGGIANI¹, JULIANA DE MORAES LEME DE MORAES BASSO¹, FRED BOWYER⁵, CATHERINE ROSE⁶ AND RICARDO IVAN FERREIRA TRINDADE³

¹Instituto de Geociências, Universidade de São Paulo
²Faculty of Geosciences and MARUM – Center for Marine Environmental Sciences, University of Bremen
³Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo
⁴Universidade de São Paulo
⁵University of Leeds

⁶University of St Andrews

The Ediacaran-Cambrian transition marks the rise of multicellular complex life on Earth along with global-scale paleoenvironmental changes. Carbon isotope chemostratigraphy stands out as one of the main correlation tools between sedimentary successions, with recent advances in high-resolution Ediacaran chemostratigraphy achieved through correlation of δ¹³C data from successions worldwide. Carbonate rock drill core samples from the GRIND-ECT project (Geological Research through Integrated Neoproterozoic Drilling - Ediacaran-Cambrian Transition) were analyzed for carbon and oxygen isotopes. These cores encompass the Bocaina (~570 – 555 Ma) and Tamengo (~550 - 540 Ma) formations; key units of the upper Corumbá Group, Brazil. In both units, the δ¹³C trends correlate with sequence-stratigraphic data. The Bocaina Formation δ^{13} C values rise from around 0 to +2 ‰, and at the Bocaina-Tamengo limit, there is a minor $\delta^{13}C$ excursion down to ca. -2 \%. In the Tamengo Formation δ^{13} C values prominently rise to +6 %, reaching a peak coincident with the maximum flooding surface, before gradually decreasing to +3 %, whereafter they remain at characteristic plateau values throughout the upper Tamengo Formation. chemostratigraphic trend fits in the Ediacaran δ^{13} C global curve and is strikingly similar to the record of the coeval Nama Group (Namibia), which suggests the influence of eustatic sea level and/or equivalent basin subsidence histories on opposing sides of a gradually closing seaway during the amalgamation of Western Gondwana. Furthermore, δ^{13} C trends coupled with shifts in acritarch and Cloudina relative abundances, are also linked to sea-level variations, which in turn control the areal extent of the shallow shelf for macrobenthos dwellers, nutrient delivery, and organic carbon burial. The links between sequence-, bio-, and chemostratigraphy reinforcing an intimate connection between the coevolution of biota and environment during the terminal Ediacaran.