

The study of non-hydrocarbon gases and its implications for natural hydrogen and helium exploration

BERNHARD M. KROOSS¹, JIA WU¹, XIAOQIANG LI²
AND PHILIPP WENIGER³

¹China University of Petroleum (Beijing)

²University of Texas at Arlington

³German Federal Institute for Geosciences and Natural Resources

Natural gases may contain significant amounts of non-hydrocarbon components such as N₂, CO₂, and H₂S. The prediction of non-hydrocarbon contents, which may range from traces to nearly 100%, remains one of the major challenges in energy gas exploration. Many aspects regarding origins and accumulation mechanism of nonhydrocarbon gases in deep subsurface reservoirs are still debated. The present state of understanding is summarized in Table 1.

The discovery of surface emanations of natural gases rich in H₂, has prompted speculations about commercial reservoirs of “natural hydrogen”, and several mechanisms have been proposed.

1. Hydrogen (H₂) generation by serpentinization of olivine:

This is a viable and active process that has persistently fuelled chemoautotrophic life throughout much of Earth's history. The reaction of water with ferrous iron consumes oxygen and releases H₂. Most known occurrences are in Mid-Ocean hydrothermal areas and surface-near water-ophiolite environments, which typically lack efficient seals and structural traps.

2. Thermal liberation of H₂ from sedimentary organic matter (disproportioning):

Sedimentary organic matter carries its “own” hydrogen, deriving from water splitting and “H-fixation” during photosynthesis. Laboratory experiments show that large amounts of H₂ are released during *open* system pyrolysis. But only marginal quantities are observed in *closed* system pyrolysis, due to the high reactivity of hydrogen.

3. Liberation of H₂ during thermal decomposition of ammonium clays/feldspars:

Ammonium clays/feldspars are the most likely sources of N₂-rich gases in the deep subsurface. The ammonium hydrogen is derived from water splitting during nitrogen fixation by *nitrogenases*. Thermal/hydrothermal decomposition of NH₄⁺-bearing minerals producing N₂ should release significant quantities of H₂. Bleached hematite layers in the vicinity of N₂-rich gas reservoirs may result from reduction of ferric iron by H₂ or NH₄⁺. Data from N₂/CO₂-rich natural gases in German Lower Permian reservoirs document H₂ contents of up to 4%. These

were, however, attributed to corrosion and have never been examined systematically.

Correlation of He and N₂ contents of natural gases:

Helium contents of natural gases appear to correlate more clearly with N₂ contents than with concentrations of other gases. This could indicate a common source but also similar dependencies on temperature and burial history.

Table 1: Proposed sources of non-hydrocarbon natural gases

Gas	Proposed sources/origin:
N ₂	“Inorganic” (organic origin): ammonium-rich clay minerals
	Organic: pyrrolic/pyridinic organic compounds
	Inorganic: nitrates (hypothetical)
	Inorganic: mantle (hypothetical)
CO ₂	Inorganic: carbonate metamorphism and hydrolysis
	Organic: thermal decarboxylation, thermochemical sulfate reduction
H ₂ S	Organic: “Bacterial” Sulfate Reduction (BSR)
	Inorganic: Thermochanical Sulfate Reduction (TSR)
H ₂	Inorganic: Serpentinization (water splitting by oxidation of ferrous iron)
	Organic: Decomposition of organic matter (disproportioning)
	Organic/inorganic: Decomposition of ammonium clay minerals