Are Chlorine stable isotopes a tracer of anthropogenic inputs in the critical zone?

AMITA PRAJNA MALLIK¹, PIERRE AGRINIER¹, JÉRÔME GAILLARDET¹, SOPHIE GUILLON², SOFÍA LÓPEZ URZÚA¹, MARIE-CLAIRE PIERRET³, SOLENN COTEL³, OPHELIE FOVET⁴ AND GERARD BARDOUX¹

Chloride ion (Cl⁻) is a conservative solute widely used as a hydrological tracer in watershed studies. Its low background levels and substantial presence in anthropogenic sources make it an indicator of human impact on water bodies. Prior works¹ on the Cl stable isotopic composition (δ^{37} Cl) of chlorides have helped elucidate the geodynamic cycle of Cl, ion transport in porous media, magmatic and volcanic processes, etc. The homogeneity of oceanic δ^{37} Cl (at 0 ‰)² provides a global reference standard, while the salts and organochlorine compounds used in industrial and agricultural applications display a wide δ^{37} Cl range (-6 to +6 ‰). Due to this variability, δ^{37} Cl has the potential to serve as a valuable tracer for anthropogenic contamination in freshwater systems, particularly when compared to ocean-derived atmospheric inputs.

However, the natural variations in δ^{37} Cl of chlorides from freshwater systems remain largely unexplored. Our research aims to fill this gap by studying the δ^{37} Cl composition of water samples from different compartments of the critical zone (CZ). We analyzed water samples from French CZ observatories³ across a range of geographic and climatic contexts. Preliminary results suggest the presence of a coast-inland gradient, with the coast-proximal Naizin catchment (δ³⁷Cl mean: 0.06‰, SD 0.15, n=29) clustering close to that of seawater and indicating the dominance of oceanic input through rain. Contrastingly, results from the inland, agricultural-dominated Orgeval catchment show a notable depletion relative to seawater (δ^{37} Cl mean: -0.22‰, SD 0.34, n=56). This observation is concurrent with lower observed [Na]/[C1] at Orgeval, indicating the chlorine-enriching alteration of oceanic inputs possibly through fertilizer inputs and urban emissions.

This study marks one of the first efforts to establish the Clisotopic composition in rivers and in defining the riverine input to the global budget. Ongoing work will refine our understanding by analyzing potential end-members, studying additional catchments and shedding light on fractionation mechanisms.

- [1] Eggenkamp (2014), The geochemistry of stable chlorine and bromine isotopes.
 - [2] Godon et. al. (2004), Chemical Geology 207, 1-12
 - [3] Gaillardet et. al. (2018), Vadose Zone Journal 17, 1-24

¹Institut de Physique du Globe de Paris

²Mines ParisTech, PSL University

³Université de Strasbourg

⁴INRAE