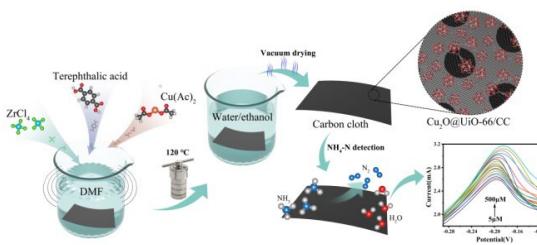


Rapid and ultrasensitive electrochemical detection of ammonia nitrogen in groundwater by a core-shell $\text{Cu}_2\text{O}@\text{UiO-66}$ modified electrode

BING YAN, KEZHI LI, YONG LI AND XIANJUN XIE

China University of Geosciences


Ammonia nitrogen (NH_3 and NH_4^+ , $\text{NH}_4\text{-N}$), as an important chemical indicator reflecting the quality of the water environment, plays a vital role in ecosystem stability. Especially in complex and variable low-quality groundwater environments, it is necessary to develop high-sensitive and selective $\text{NH}_4\text{-N}$ detections to provide technical support for investigating its migration and remediation mechanism. The most-used detection method for $\text{NH}_4\text{-N}$ is Nessler's reagent method, which suffers from a highly toxic substance, interference with other components, as well as only being used on-site instead of in-situ. Thus, the urgent key issue in this field is to develop a highly selective, environmentally friendly, and rapid in-situ detection method for ammonia nitrogen in groundwater where multiple components coexist.

In this study, a three-electrode detection system for $\text{NH}_4\text{-N}$ with core-shell MOF($\text{Cu}_2\text{O}@\text{UiO-66}$) as the working electrode was constructed. The functionalized $\text{Cu}_2\text{O}@\text{UiO-66}$ was synthesized by a facile hydrothermal method, followed by an in-situ growth on conductive carbon cloth (CC) to fabricate an electrochemical sensor ($\text{Cu}_2\text{O}@\text{UiO-66/CC}$). Under optimized conditions, the $\text{Cu}_2\text{O}@\text{UiO-66/CC}$ electrochemical sensor demonstrated a response time of only 12 seconds for detecting ammonia nitrogen through cyclic voltammetry (CV), with a low detection limit of $0.231 \mu\text{M}$, sensitivity of $5.75 \mu\text{A}\cdot\mu\text{M}^{-1}$, strong anti-interference ability, and a long service life. The detection mechanism was investigated as the presence of oxygen vacancies created by carboxylate ions and the nanoconfinement effect resulting from the pores of UiO-66 in the “shell” structure, which captures more ammonia nitrogen to the “core” Cu_2O to complete the subsequent electrocatalytic oxidation. Spiked water and real groundwater samples analysis showed that the sensor exhibited reliable recoveries (98.47% to 100.39%) and relative standard deviation (RSD) ($<3\%$). This study offers a novel approach for swift and accurate in-situ detection of ammonia nitrogen in groundwater, indicating a great potential for practical application.

References:

[1] P. Phansi, S. Sumantakul, T. Wongpakdee, N. Fukana, N. Ratanawimarnwong, J. Sitanurak, D. Nacapricha, Membraneless gas-separation microfluidic paper-based analytical devices for direct quantitation of volatile and nonvolatile compounds, *Analytical Chemistry*, (2016) 8749.

[2] B. Mohan, Priyanka, G.S.C.J.L.P. Ren, Metal-organic frameworks (MOFs) based luminescent and electrochemical sensors for food contaminant detection, *Journal of Hazardous*

