Iron Dynamics in Basalt-rich Andosols – Implications for Enhanced Rock Weathering

TOBIAS LINKE^{1,2}, KNUD DIDERIKSEN^{3,4}, KAREN MARIA DIETMANN^{5,6}, ERIC H. OELKERS^{1,7}, JENS HARTMANN² AND SIGURDUR R. GISLASON^{1,7}

¹Institute of Earth Sciences, University of Iceland

⁶Grupo de Investigación Reconocido-Química del Estado Sólido, Materiales y Catálisis Heterogénea (GIR-QUESCAT), University of Salamanca

⁷Ali I. Al-Naimi Petroleum Engineering Research Center, KAUST

Various carbon dioxide removal (CDR) techniques are currently under consideration to mitigate global warming and achieve proposed climate targets. Among these, enhanced rock weathering (ERW) aims to drawdown CO₂ by accelerating natural weathering processes utilizing abundant, low-cost materials, such as basalt. The chemical composition of basalt, particularly the role of iron (Fe), is critical for the success of this approach, as the Fe²⁺ content in basalt can vary depending on its

This study presents findings from a field investigation of an Icelandic Andosol. The site has received a high dust flux of basaltic material for the past 3,000 years, making this an ideal analogue to study long-term ERW applications. Our results reveal that the rapid oxidation of Fe^{2+} in the oxic zones of the system leads to the rapid precipitation of iron-(oxy)-hydroxides. In contrast, reduced conditions in deeper soil horizons favor the preservation of Fe^{2+} in both the soil waters and in Fe^{2+} -carbonate and -sulfide minerals. Notably, the formation of siderite provides an additional carbon sink, but its potential re-dissolution and oxidation of Fe^{2+} -under fluctuating soil conditions can lead to the loss of this stored carbon.

The weathering of soil minerals and basaltic material increases substantially the alkalinity of soil waters. In iron-rich systems, a significant portion of this alkalinity is attributed to Fe²⁺. However, transitioning to an oxic environment causes the redissolution of iron minerals, oxidation of Fe²⁺, and the precipitation of Fe³⁺-minerals, resulting in a loss of the alkalinity previously associated with Fe²⁺. Field evidence demonstrates the large impact of this process on the CO₂ drawdown potential of ERW efforts. Simultaneously, the formation of new Fe³⁺-minerals, such as ferrihydrite, provides ample surfaces to immobilize heavy metals. The formation of these Fe³⁺-minerals may also affect nutrient cycling, including phosphate availability.

²Institute for Geology, University of Hamburg

³Geological Survey of Denmark & Greenland (GEUS)

⁴Nano-Science Center, University of Copenhagen

⁵Landesamt für Umwelt, Naturschutz und Geologie Mecklenburg-Vorpommern