Widespread incorporation of surfacederived sulfur in Eoarchean rocks from Isua and Labrador

J. ELIS HOFFMANN¹, JONATHAN A. LEWIS¹, HARALD STRAUSS², AKIRA ISHIKAWA³, KENNETH D COLLERSON⁴, AUSTIN JARL BOYD⁵, CARSTEN MÜNKER⁶, KRISTOFFER SZILAS⁵, EMILY C POPE⁷, MARTIN J. WHITEHOUSE⁸ AND ESTHER M. SCHWARZENBACH⁹

¹Freie Universität Berlin

The geodynamic mode during the Eoarchean is controversial. For instance, it is not clear yet, if and how volatiles cycled between crust and mantle. Multiple sulfur isotopes (32S, 33S, 34S, ³⁶S) have been shown to be a powerful tool to trace the recycling of surface material into the mantle. In this study, we obtained bulk-rock multiple sulfur isotope data of >3.7 Ga rocks (serpentinites, magnesite, amphibolites, metasediments) from the Isua Supracrustal belt (ISB, SW Greenland), well characterized samples from the >3.7 Ga Nulliak assemblage (Labrador) [1], and from a pre-Uivak ultramafic body (Labrador) [1] to evaluate how widespread the mass independently fractionated sulfur (MIF-S) signature was incorporated. The metasedimentary rocks from the ISB yield Delta³⁴S of +1.1-+2.7 and large Cap delta³³S anomalies of up to +3.1, overlapping with previous studies. In combination with published data [2-3], the ultramafic and mafic samples from Isua have delta³⁴S spanning from -0.18 to +2.7 and Cap Delta³³S from -0.13 to +0.46. The d³⁴S, Cap Delta³³S and Cap Delta³⁶S data of the Nuliak suite and the pre-Uivak ultramafic body show incorporation of MIF-S. Overall, this indicates that both Eoarchean terrains show widespread incorporation of sulfur that has been processed at the surface. The magmatic rocks from Isua show a more pronounced D³³S signature than those from Labrador. These signatures indicate both hydrothermally processed sulfur as well as signatures derived from sedimentary pyrites. The occurrence of negative and positive delta³³S in different rock types sampled in close proximity indicates that the signature is primary and not redistributed from sedimentary units during metamorphism. Direct U-Pb dating of sulfides yielding non-zero Cap Delta³³S from >3.8 Ga peridotites south of the ISB reveals an Eoarchean origin [4], providing evidence that volatiles cycled within the crust-mantle system early, possibly during subduction-like processes.

- [1] Ishikawa, A. et al. (2017) GCA 216, 286-211.
- [2] Siedenberg, K. et al. (2016) Precamb. Res. 283, 1-12.
- [3] Lewis, J. et al. (2023) Chem. Geol. 633, 121568.
- [4] Lewis, J. et al. (2023) Goldschmidt abstract, DOI: 10.7185/gold2023.17835.

²Universität Münster, Institut für Geologie und Paläontologie, 48149 Münster, Germany

³Institute of Science Tokyo

⁴The University of Queensland

⁵University of Copenhagen

⁶University of Cologne

⁷Center for Climate and Energy Solutions (C2ES)

⁸Swedish Museum of Natural History

⁹University of Fribourg