Calcium isotope ratios in modern cold-water corals reveal significant internal variability: an insight into biomineralization?

GUILLAUME PARIS¹, CLAIRE ROLLION-BARD², ANNE MELISSA GOTHMANN³, JOHAN VILLENEUVE⁴ AND DOMINIQUE BLAMART⁵

The isotope abundance ratio of calcium measured in biogenic carbonate, usually reported as d⁴⁴Ca, is an elusive proxy that has been suspected to record temperature, precipitation rate, alkalinity or carbonate ion concentration [e.g. 1,2], assuming a stable seawater d⁴⁴Ca value. With a residence time in the ocean on the order of 1 Ma, changes in d⁴⁴Ca of seawater is itself assumed to reflect variations in weathering rate and/or calcium carbonate deposition fluxes [e.g. 3, 4].

However, despite calcium being a major building block of biogenic carbonate, the extent biomineralizing organisms' active control over Ca transport to the site of mineralization and its implications for the d⁴⁴Ca of the resulting calcium carbonate remain poorly understood.

To this day, only one study has investigated small scale variations of d⁴⁴Ca within a biogenic calcium carbonate, revealing 1.7‰ of variability within a single test of the foraminifera *Globorotalia inflata* [5]. Such a result was unexpected, as fractionation between seawater and calcium carbonate in bulk organisms is within the range of -1 to -2‰ with very little variability [3], and was interpreted to reflect variation in precipitation rate.

Cold-water corals (CWC) can also be used as paleooceanographic archives [4]. In order to understand if they are a reliable recorder of past d⁴⁴Ca, we produced the first small-scale "in-situ" measurements of d⁴⁴Ca using the IMS 1280 at CRPG, Nancy (France). We analyzed three aragonitic species: Desmophyllum pertusum (formerly called Lophelia pertusa), Madrepora occulata and Desmophyllum cristagalli. Our results reveal an internal reproducible pattern of measured d⁴⁴Ca with an internal variability of ~2% in a single skeleton for each of the studied species. The results are discussed in terms of microstructure and chemical composition of the skeleton in order to understand which factors control the incorporation of calcium in CWC. This work was funded through the CNRS INSU LEFE/CYBER program.

- [1] Lemarchand et al., 2004, GCA 68, 4665-4678;
- [2] Gussone et al., 2003, GCA 67, 1375–1382;
- [3] Blättler et al., 2012, Geology 40, 843-846;

¹Université de Lorraine, CNRS, CRPG

²Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL)

³St. Olaf College

⁴CRPG-CNRS, Université de Lorraine

⁵Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL), Gif-sur-Yvette