## Abiotic mineral-fluid-gas reactivity in underground $\rm H_2$ storage: A kinetic rate law for reductive pyrite dissolution from 60-150 °C and up to 150 bar $\rm P_{H2}$

**ROBIN HINTZEN** $^1$ , ROLAND HELLMANN $^2$ , JULIA VAN WINDEN $^3$  AND LAURENT TRUCHE $^1$ 

Hydrogen is an energy storage medium as excess energy from renewable sources can be used to produce green  $H_2$ . Large-scale  $H_2$  storage in subsurface environments (e.g. salt caverns, depleted gas fields, aquifers) can support the energy transition. However, fluid-rock- $H_2$  interactions are a concern as  $H_2$  is a potent electron donor. For example, the reductive dissolution of pyrite produces gaseous  $H_2S$ , a toxic and corrosive contaminant of the stored  $H_2$  gas [1, 2].

To study the kinetics of reductive pyrite dissolution at conditions relevant to underground  $H_2$  storage, anoxic alteration experiments of pyrite ( $\phi = 50\text{-}100~\mu\text{m}$ ) were conducted at T = 60-150~°C,  $P_{\text{H}2} = 7\text{-}150$  bar and  $pH \sim 3.8\text{-}8.6$  in 30 mmol/L NaCl solutions. Experiments were carried out in  $H_2\text{-pressurized}$  batch reactors made either of titanium or coated stainless steel. The temporal evolution of dissolved sulfide concentrations was measured by methylene blue spectrophotometry (Fig. 1). Electron microscopy of post-mortem pyrite grains revealed the formation of authigenic pyrrhotite and magnetite. The derived kinetic rate law was based on total (aqueous + gas) sulfide production rates determined at 12h, which represents far-from-equilibrium conditions. For implementation in geochemical codes, the rate law was based on the general form given in Eq. (1).

Reductive pyrite dissolution was upscaled over a 30-year period using batch models to simulate  $\rm H_2$  storage into a sandstone depleted gas field, containing 0.13 vol.% pyrite, 4.6 vol.% carbonates at 117 °C and an injection pressure of 150 bar (PHREEQC, modified Thermoddem database [3]). The models predicted buffered gas concentrations of 28 ppm  $\rm H_2S$  and 4.4 %  $\rm CO_2$ . In a sensitivity study, calculated gas concentrations varied on the order of  $10^0$ - $10^3$  ppm  $\rm H_2S$ , emphasizing the role of Febearing minerals (e.g., chlorite, siderite) as a source of  $\rm Fe^{2^+}_{(aq)}$  for scavenging dissolved sulfide ions.

## References:

- [1] Bourgeois et al. (1979), Rev. Inst. Franç. Pétrole 34, 371-386
- [2] Truche et al. (2010), Geochim. Cosmochim. Acta 74, 2894-2914
- [3] van Winden et al. (2024),  $5^{th}$  EAGE-GET conference abstract.

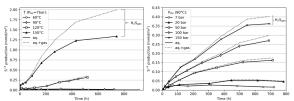



Fig. 1: Normalized sulfide production (mmol/m²) as a function of time, temperature (left) and  $P_{\rm H2}$  (right) Aqueous sulfide concentrations were measured by methylene blue spectrophotometry while gaseous  $H_2$ :

<sup>&</sup>lt;sup>1</sup>University Grenoble Alpes

<sup>&</sup>lt;sup>2</sup>CNRS, University Grenoble Alpes

<sup>&</sup>lt;sup>3</sup>Shell Global Solutions International B.V.