Biomonitoring of particulate matter composition using *Tillandsia* usneoides: limitations related to the fate of nutrient and analogue elements in leaves

AUDE CALAS^{1,2}, EVA SCHRECK¹, VÉRONIQUE PONT³, JÉRÔME VIERS¹, PHILIPPE BEHRA², MARIA DIAZ-ALVES³, ERIC GARDRAT³, ALAIN PAGES⁴ AND ASTRID

Tracking for particulate matter (PM) contamination is a tedious task that requires sophisticated samplers powered by electricity. Biomonitoring strategies have been developed to assess PM contamination. Among them, epiphyte plants are widely utilised due to their reliance on atmospheric inputs for nutrition. However, robust assessment of the effectiveness of such strategies remains limited. This study aimed to assess whether *Tillandsia usneoides*, commonly used epiphyte plants, can accurately characterize PM contamination across four sites in a former French mining district over one year. Comparisons were made between (i) PM₁₀ samplers capturing PM with an aerodynamic diameter < 10 µm, and (ii) T. usneoides, which was assumed to accumulate all deposited particles (both wet and dry). The finding revealed that atmospheric composition measured by PM₁₀ samplers and T. usneoides was consistent for 14 of the 27 analysed elements, including metals and metalloid such as Cr, As or Pb. However, elements related to (micro)nutrients or those chemically similar to nutrients (Na, Rb, Sr) showed no significant or positive correlation. While epiphyte plants offer a cost-effective and efficient tool for (bio)monitoring PM composition, results involving elements playing a role in plant metabolism should be interpreted with caution. Further research should better elucidate the mechanisms governing the behaviour of inorganic elements in leaves, such as PM properties, epiphyte microstructure, metabolic responses, and abiotic factors.

¹Géosciences Environnement Toulouse (GET), Université de Toulouse, CNRS, IRD

²Institut National Polytechnique de Toulouse

³Laboratoire d'Aérologie (LAERO), Université de Toulouse, CNRS, UPS

⁴Observatoire Midi-Pyrénées