Mineral chemistry and fluid inclusions of enargite in the Lepanto high-sulfidation epithermal deposit, Mankayan Mineral District, Philippines

PEARLYN MANALO¹, RYOTA MINE¹, TOMOFUMI KON¹, NIGEL BLAMEY², KALIN KOUZMANOV³, RYOHEI TAKAHASHI¹, ANDREA AGANGI¹, AKIRA IMAI⁴, LEO SUBANG⁵ AND RENE CLAVERIA⁶

Enargite (Cu₃AsS₄), a diagnostic ore mineral for highsulfidation epithermal deposits, represents an important copper and gold resource. Enargite hosts critical elements such as Te, Sb, and Ge, either as solid solution or as inclusions. In the Mankayan Mineral District, Philippines, several events of enargite mineralization have been previously documented. Ages of alunite that are closely associated with the enargite mineralization range from 2.2 Ma [1] to 1.45 Ma[2]. In this study, we investigate how the chemical composition of enargite varies across different orebodies in Lepanto, and how it correlates to variations of temperature, salinity, and volatile composition of hydrothermal fluids.

Petrography revealed variable opacity of enargite crystals to near-infrared light. Tabular enargite commonly displays an opaque core overgrown by transparent rims. Trace element analysis revealed that enargite opacity positively correlates with Sn, Sb, and Fe content. Enargite from the Northwest orebody has the widest range of Sb contents, reaching up to 5.5 wt%, while that from the Lepanto Main and Florence orebodies has up to 2.0 wt% Sb. Enargite of the Florence and Lepanto Main orebodies is richer in Sn. Among the three orebodies, Ag content is the highest in the enargite from the Lepanto Main orebody, while Au is most abundant in that from the Northwest orebody.

Enargite-hosted liquid-rich aqueous fluid inclusions have homogenization temperatures between 205 and 240 °C. Fluid salinity ranges from 2.5 to 6.7 wt% NaCl eq. Bulk-gas composition analysis of fluid inclusions in enargite of the three orebodies revealed that $\rm H_2O$ and $\rm CO_2$ are the major volatile components. $\rm N_2/Ar$ ratios range from 2 to 120. Low $\rm N_2/Ar$ ratios correspond to higher $\rm H_2S$ and $\rm CO_2$ contents. These signatures indicate meteoric water and magmatic fluid contributions.

Spatial variations of the above mentioned characteristics were also observed. Sn and Te contents of enargite increase from north to south in Lepanto Main and Northwest orebodies, while N₂/Ar ratios of fluid inclusions decrease southwards. This study provides insights on the spatial and time evolution of different

¹Faculty of International Resource Sciences, Akita University

²Department of Earth Sciences, Western University

³Deptarment of Earth Sciences, University of Geneva

⁴Department of Earth Resources Engineering, Kyushu University

⁵Lepanto Consolidated Mining Co.

⁶Department of Environmental Science, Ateneo de Manila University