
Mixing processes of the oil-water-CO₂ systems and the fluid-mineral interactions in different fluid phases: Insights to CO₂ sequestration in depleted hydrocarbon reservoirs

ZIHAO JIN, YINGCHANG CAO AND GUANGHUI YUAN China University of Petroleum (East China)

In depleted hydrocarbon reservoirs, the oil-water- CO_2 system exhibits complex phase behaviors and mineral interactions in different reservoir conditions, which is crucial for CO_2 sequestration stability and mineral trapping. After CO_2 injection, vertical stratifications of fluid phases may form, including wet-supercritical CO_2 , miscible or near-miscible CO_2 with residual hydrocarbons, and CO_2 saturated or unsaturated brines. However, there is still a lack of accurate characterization of the fluid-rock interaction process and its mechanism in different fluid phase zones.

In this study, cylindrical core samples (25 mm diameter) were cut into slices (80 mm height, 20 mm width, 5 mm thickness) using a wire cutting machine. One surface of each slice was polished with abrasive sandpaper, followed by an Xreflorescence (XRF) scan to determine the elemental composition of the polished surface. A core slice was placed vertically in a high-temperature, high-pressure visual reactor with a sapphire window (Fig. 1 and 2). Simulated brine and crude oil were sequentially injected into the reactor, which was subsequently sealed and CO2 was introduced into the reactor after vacuuming. The temperature and pressure were gradually increased to 120°C and 25 MPa, respectively. Contact areas between the core surface and gas-oil-water interfaces were recorded during the reaction. After 10 days, post-reaction samples (gas, brine, hydrocarbons) were collected and analyzed through gas chromatography, inductively coupled plasma mass spectrometry, and hydrocarbon chromatography. The core slice was retrieved, cleaned, and re-analyzed by XRF for changes in surface elemental composition. Mineral surface variations and authigenic minerals in different contact zones were identified using scanning electron microscope and energy dispersion spectrum. CMG-GEM and TOUGHREACT simulations were used to investigate mass transfer and fluid-mineral interactions between different fluid phases and various mineral assemblages.

The study clarified how factors (e.g. crude oil saturation and types, pore water chemistry and partial pressure of CO₂) may control the phase behaviors of the oil-water-CO₂ mixed fluids and their contact relation with minerals in different geochemical systems. We also provided potential reaction pathways and reaction kinetics in depleted hydrocarbon reservoirs after CO₂ injection. The study will improve our understanding of the CO₂ sequestration process in depleted hydrocarbon reservoirs.

