⁸¹Kr dating of groundwater covering the entire Late-Pleistocene period

 ${\bf HAO~LI^1},$ WEI JIANG 1, GUOMIN YANG 2 AND ZHENGTIAN ${\bf LU^1}$

¹University of Science and Technology of China

Paleo-groundwater serves as a natural archive of geological and climatic changes, preserving valuable information in its rich chemical and isotopic signatures. The Late Pleistocene (129 ka - 11.7 ka), a period marked by major climatic events such as the Younger Dryas and the Last Glacial Maximum, remains a critical period for understanding Earth's climate history, requiring reliable groundwater ages across this period. The radioactive isotope ¹⁴C (half-life = 5.73 ka) is a widely used tracer in groundwater studies for estimating ages and inferring flow patterns. It covers an effective age range with an upper limit at 30 - 40 ka, or 5 - 7 times the half-life of ¹⁴C.

In comparison, the radioactive isotope ⁸¹Kr offers a much longer dating window due to its half-life of 229 ka, making it suitable for groundwater dating in an age range up to 1.5 Ma. In previous studies, ⁸¹Kr dating has not been able to reach ages younger than 50 ka. This limitation has until now prevented direct comparisons of ⁸¹Kr and ¹⁴C ages, and left ⁸¹Kr unsuitable over a significant portion of the Late Pleistocene period.

In this work, we present advancements in the Atom Trap Trace Analysis (ATTA) method that reduce analysis uncertainty to 1% of the modern level. This improvement extends the lower age limit of ⁸¹Kr dating down to 10 ka, enabling coverage of the entire Late Pleistocene period. The expanded dating range bridges the critical gap between ¹⁴C and ⁸¹Kr. Building on this advancement, groundwater samples from the North China Plain are analyzed using both tracers. This dual-tracer approach not only demonstrates the compatibility of ¹⁴C and ⁸¹Kr dating but also provides new insights into groundwater mixing and the dynamics of paleo-groundwater systems.

²Hefei National Laboratory