Microstructural evolution and deformation mechanism of amphibole in Yeoncheon amphibolites in the Imjingang Belt, South Korea

SEJIN JUNG, JUNHA KIM AND HAEMYEONG JUNG Seoul National University

The Imjingang Belt preserved the deformation metamorphism of rocks related to the Permo-Triassic continental collision between the North and South China Cratons. To understand the microstructural evolution of amphibolites, microstructures of amphiboles in Yeoncheon amphibolites were analyzed using electron back-scattered diffraction mapping and transmission electron microscopy. The Yeoncheon amphibolites exhibit well-developed foliation, as defined by the compositional layering of hornblende, garnet, and quartz. The hornblende porphyroclasts in amphibolites show relict clinopyroxene and/or undulose extinction. Two different types of lattice preferred orientations (LPOs) of amphibole were observed: type- II and type-IV [1]. Type-IV LPO of amphibole can be interpreted as a fabric developed under peak metamorphic conditions. The subgrain boundaries of amphibole, misorientation axes distribution of amphibole, and existence of relict clinopyroxenes inside the amphibole indicate that the type-IV LPO of amphibole resulted from deformation by dislocation creep and topotactic growth of amphibole. On the other hand, type-II LPO of amphibole might have been produced during the retrogression of amphibolite at low temperatures. The low-angle boundaries of amphibole associated with cracks and fractures in some samples indicate that type-II LPO of amphibole resulted from cataclastic flow associated with rigid body rotation during retrogression.

[1] Jung, S., Kim, J., Jung, H., 2024. Deformation microstructures and seismic anisotropy of Yeo-ncheon amphibolites in the Imjingang Belt, South Korea. Episodes 47, 537-553.