Radiogenic Sr isotope behavior during tropical basalt weathering

 ${\bf SHIVAM\ SAHU}^1, {\bf SATINDER\ PAL\ SINGH}^1$ and Kumar ${\bf BATUK\ JOSHI}^2$

¹Indian Institute of Science Education and Research Bhopal

Inverse coupling of radiogenic Sr-Nd isotopes is widely used for sediment provenance. Preferential release of radiogenic Sr owing to rapid biotite weathering of granitic materials has been reported previously [1]. This study explores the weathering sensitivity of radiogenic Sr isotopes from a basaltic lithology devoid of biotite. For this purpose, CIA and 87Sr/86Sr have been determined in the bedrock (n = 3) and fine lithic materials of 3 different grain-sized fractions (<20 um, <5 um, and <2 um) separated from the soil (n = 5) and saprolite (n = 10) samples. The samples were collected from a small basaltic watershed of Dhom Lake in Raigad (Maharashtra). The vertical profiles (2-8 m) of CIA and ⁸⁷Sr/⁸⁶Sr in respective grain sizes (55–93 and 0.70684-0.71174 in <20 um, 67-94 and 0.70721-0.72539 in <5 um, and 78-97 and 0.70954-0.73614 in <2 um) show dramatically covarying distributions. 87Sr/86Sr shows significant deviations from the bedrock composition (0.70659-0.70766) in the finer fractions (<5 um and <2 um in the soil and <2 um in saprolite samples). This study highlights weathering-controlled grain-size effects on radiogenic Sr isotopes since UCC contribution of <6 % in finer fractions is revealed based on radiogenic Pb and Nd isotopes.

Reference:

[1] Blum, J.D., Erel, Y., 1997. Rb-Sr isotope systematics of a granitic soil chronosequence: The importance of biotite weathering. Geochim. Cosmochim. Acta 61, 3193-3204.

²National Centre for Earth Science Studies