The partitioning of H₂O between plagioclase and dacite melts at crustal conditions: Experimental constraints

MANUEL PIMENTA SILVA¹, BRIAN DAVID MONTELEONE¹, GLENN GAETANI¹, DAWNIKA L. BLATTER² AND DR. THOMAS (TOM) SISSON, PHD³

The quantification of pre-eruptive magmatic H₂O is critical due to the significance of this variable in volcanic processes and associated hazards. We present a new hygrometric proxy for dacitic magmas by experimentally determining H₂O partitioning between plagioclase and dacitic melt, a relationship previously unquantified. Plagioclase is ideal for this purpose as it is common in arc magmas, stable over a wide P-T-X range, and has lower H diffusivity than other silicate minerals[1].

We measured H_2O concentrations in plagioclase and coexisting dacitic glass (SIMS) from vapor-saturated experimental runs[2,3]. The starting material of the experiments has a Mount St. Helens dacitic composition (65.2 wt.% SiO₂). The chosen experiments were performed in piston-cylinder apparatuses[2,3] at 900-1000 °C, 0.4-1.3 GPa. Oxygen fugacity was buffered close to the Re-ReO₂ buffer. Temperature was held above the liquidus for 2 hours before being adjusted to the target run conditions. This methodology induced the crystallization of euhedral and homogeneous plagioclase crystals in equilibrium with dacitic to rhyodacitic melt[2,3], which were large (>50 μ m) enough to be analyzed by SIMS.

The results of the first analytical session on experimental runs with 66.5-71.7 wt.% SiO₂ in glass and An₄₃₋₆₀ show 3.7-5.6 wt.% ${\rm H_2O^T}_{\rm glass}$ and 94-137 µg/g ${\rm H_2O}_{\rm plag}$, resulting in ${\rm D^{plag-glass}}_{\rm H2O}$ between 2-3*10⁻³. We report no discernable correlation of ${\rm D^{plag-glass}}_{\rm H2O}$ with experimental temperature, pressure, or ${\rm FeO^T}_{\rm plag}$. A negative correlation between ${\rm D^{plag-glass}}_{\rm H2O}$ and An# is observed. This is the first report of such correlation as previous studies focused on Na-free systems or used plagioclase seeds of fixed composition. These observations could suggest H incorporation in tetrahedral vacancies, and ongoing work seeks to explore this possibility.

The lack of correlation between $D^{plag-glass}_{H2O}$ and most intensive variables (T,P) suggests H_2O_{plag} contents could be a useful proxy for magmatic H_2O concentrations. When combined with other methods such as melt inclusion volatile analysis, H quantification in rapidly diffusing phases (e.g., olivine, pyroxene) or plagioclase-melt hygrometry, our method may better constrain pre-eruptive H_2O contents by mitigating post-crystallization/entrapment bias.

- [1] Johnson & Rossman (2013), Am Mineral, 98, 1779-1787
- [2]Blatter, Sisson & Hankins (2017), Contrib Mineral Petrol, 172, 27
 - [3] Blatter, Sisson & Hankins (2023), Contrib Mineral Petrol,

¹Woods Hole Oceanographic Institution

²U.S. Geological Survey California Volcano Observatory

³U.S. Geological Survey