Formation of amorphous Fe arsenates and their roles in the crystallization of scorodite

DR. XIANGYU ZHU 1 , PEI CHANG 2 AND HUI HENRY TENG 3

¹School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University

Amorphous ferric arsenate (AFe^{III}) and amorphous ferrous arsenate (AFe^{II}) serve as crucial arsenic sinks in acidic, arsenicrich environments, playing key roles in the geochemical cycling and mineralization of iron-arsenic-bearing minerals such as scorodite (FeAsO₄·2H₂O). Despite their significance, the precipitation kinetics and structural transformations of these amorphous phases remain poorly understood. This study examines the formation and crystallization pathways of AFe^{III} and AFe^{II} under varying pH, As/Fe ratios, and temperature conditions using a combination of in situ and ex situ techniques, including small- and wide-angle X-ray scattering SAXS and X-ray absorption spectroscopy XAFS .Our results reveal a two-stage precipitation process for AFe^{III}: (i) the initial formation of subnanometer- to nanometer-sized particles (8.87-10.11 Å radius), likely consisting of arsenate-FeO₆ octahedral complexes, followed by (ii) particle growth via a non-classical attachment mechanism involving hydrogen bonding. Elevated temperatures enhance particle growth in Stage I by promoting FeO₆ incorporation, while higher pH and As/Fe ratios accelerate precipitation by reducing electrostatic repulsion. In contrast, AFe^{II} exhibits longer Fe–O bond lengths $(2.02 \pm 0.01 \text{ Å})$ relative to AFe^{III} $(1.99 \pm 0.01 \text{ Å})$ and scorodite, leading to slower transformation kinetics due to structural misfit and a reduced capacity to supply aqueous Fe3+. Consequently, AFeII crystallization results in the formation of larger, euhedral scorodite crystals. These findings improve our understanding of Fe-As mineralization mechanisms and provide insights into arsenic remediation strategies applicable to both natural and industrial settings.

²Chengdu University of Technology

³School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin