Tracing submarine groundwater discharge using radon (²²²Rn) and radium isotopes (²²³Ra and ²²⁴Ra) in the tidal flat seawater of the Yellow Sea

HANBYUL LEE, SOJIN PARK AND GUEBUEM KIM Seoul National University

We measured the activities of ²²²Rn (half-life: 3.8 days), ²²³Ra (half-life: 11.3 days), and ²²⁴Ra (half-life: 3.6 days) to evaluate submarine groundwater discharge (SGD) in tidal flat areas of the Yellow Sea. The ²²²Rn activities were measured using a real-time monitoring system together with NO₃⁻ and humic-like fluorescent dissolved organic matter (FDOM_H) sensors. ²²³Ra and ²²⁴Ra activities were measured using a radium delayed coincidence counter (RaDeCC). Both 223Ra and 224Ra activities were approximately 1.5 times higher in August relative to June, whereas excess ²²²Rn activities and NO₃ concentrations were approximately 10 times higher in June. Based on the ²²⁴Ra mass balance model, SGD was estimated to be 0.28±0.31 m yr⁻¹ in June and 0.55±0.30 m yr⁻¹ in August, respectively. The elevated excess ²²²Rn activities and NO₃ concentrations in June were attributed to the occurrence of the maximum groundwater discharge within two days due to high tidal fluctuations during the observation period. However, in August, the occurrence of the maximum groundwater discharge a week before the observation period seems to result in an effective evasion of ²²²Rn and a full consumption of NO₃. In addition, the ratios of NO₃ to FDOM_H concentrations in August (0.7±0.1) were lower than those in June (1.7±0.6), due to the prolonged biological consumption of NO₃⁻ relative to the more conservative FDOM_H. Our results suggest that radium isotopes together with 222Rn enable the evaluation of the inflow history and the fluxes of SGD in the tidal flat of the Yellow Sea.