
Plume-ridge interaction unravels the origin of ³He/⁴He peak offset from plume center

PENGYUAN GUO¹, FINLAY M STUART², YAOLING NIU³, UGUR BALCI², XIAOHONG WANG¹ AND JIANGGU LU⁴

The Easter-Salas y Gomez Ridge (ESGR) has been generated/generating by the long-lived Easter mantle plume (EMP). The plume center is inferred to be located near Salas y Gómez Island ($\sim 106^{\circ}$ W) [1]. Basalts with high 3 He/ 4 He (11.7 R₂) are reported for East Pacific Rise (EPR) at 112°W [2], but no ³He/⁴He data exist on ESGR seamounts. An extensive study of basaltic glasses from seamounts along the ESGR reveals a peak ³He/⁴He (18-19 R_a) that is present in seamounts around Easter Island (Rapa Nui) around 110°W. The ³He/⁴He peak is offset by 300-400 km from the trace element and radiogenic isotope expression of the Easter plume [3] (Fig. 1). The melts produced close to the plume center were generated beneath thick lithosphere and exhibit MORB-like ³He/⁴He values and enriched trace element/isotopic composition, while the high-³He/⁴He near-EPR basalts are compositional similar to ambient depleted mantle and were generated beneath thinner lithosphere. It seems likely that the high-3He/4He component is present in compositionally depleted and physically refractory mantle that possesses a higher solidus than the enriched mantle components in the upwelling plume. The observed along-ESGR geochemical variation can be readily explained by ridge-ward flow of the heterogeneous Easter plume mantle towards the EPR in response to ridge suction and decompression melting [4]. Early melting of the enriched mantle domains in the upwelling plume is followed progressively greater contributions from depleted, high-³He/⁴He mantle that possesses a higher solidus, resulting in gradually lower [La/Sm]_N, ⁸⁷Sr/⁸⁶Sr and ²⁰⁶Pb/²⁰⁴Pb and higher ¹⁴³Nd/¹⁴⁴Nd and ¹⁷⁶Hf/¹⁷⁷Hf (Fig. 1). This plume-ridge interaction process explains why deep mantle He isotope signatures are often spatially decoupled from the enriched signature in mantle plumes interact with mid-ocean ridges.

References:

[1] O'Connor J.M. et al., 2024. Nature Comms. 15, 9953. [2] Poreda R.J. et al., 1993. Earth Planet. Sci. Lett. 119, 319-329. [3] Kingsley, R.H., & Schilling, J.G., 1998. J. Geophys. Res. 103, 24159-24177. [4] Niu, Y. & Hékinian, R., 2004. Oceanic Hotspots 285-307.

¹Institute of Oceanology, Chinese Academy of Sciences

²Scottish Universities Environmental Research Centre (SUERC)

³China University of Geosciences

⁴Second Institute of Oceanography, Ministry of Natural Resources