The relationship between $Fe^{3+}/\Sigma Fe$ of melts and peridotite minerals

FRED A DAVIS^{1,2}, **ELIZABETH COTTRELL**², LOGAN T LITTLE^{1,2} AND AYOMIDE R AJAYI^{1,2}

The relationship between the Fe3+/FeT of MORB and the Fe³⁺/FeT of the solid, convecting, upper mantle is unknown yet critically constrains geophysical observations and mantle fO_2 as a function of depth, temperature, lithology, and time. Natural observations and experimental determinations of Fe³⁺ partitioning between basalts and peridotite residues suggest that as melting proceeds in the spinel stability field, mineral chemistry and mode in the peridotite may evolve such that the system maintains approximately constant melt Fe3+/FeT, and hence constant residue fO2 [1]. To accurately model the evolution of the rock-melt system and project the composition of peridotite back along the melting column to infinitesimal melt fractions will require quantification of mineral chemistries (including Fe³⁺/FeT) as a function fO₂, P, and T. We equilibrated silicate melts and mineral assemblages of olivine, orthopyroxene, and spinel, ±clinopyroxene, over a range of fO₂ and spinel Cr# at 1 atmosphere and 1.5GPa. Spinel oxybarometry and glass Fe³⁺/FeT both record the measured furnace (or calculated FePt capsule) fO2. increases as a function of spinel Fe2O3 [2] and decreases as a function of temperature [3]. New 1 atmosphere experiments show that increases by a factor of 2 to 2.5 as spinel Cr# increases from approximately 0.18 to about 0.65. Because average spinel Cr# increases as a function of mantle potential temperature, we predict that spinel Cr# and Tp will exert competing effects on during MORB generation and modulate observed variations in MORB Fe³⁺/FeT as a function of extent of melting and potential temperature [4].

- [1] Birner et al., EPSL (2021) Earth and Planetary Science Letters 566: 116951.
- [2] Davis and Cottrell, (2018) *American Mineralogist* 103.7: 1056-1067.
- [3] Davis and Cottrell, (2021) Contributions to Mineralogy and Petrology 176.9: 67.
- [4] Cottrell and Kelley, (2011) Earth and Planetary Science Letters 305.3-4: 270-282.

¹University of Minnesota Duluth

²National Museum of Natural History, Smithsonian Institution