Carbonate sulfur and uranium isotopes record the ocean redox change across the Ediacaran-Cambrian transition in the Central Iberian Zone, Spain

LIN YUAN¹, YING ZHOU^{1,2}, ALEXANDER J. DICKSON³, JULIE BROWN¹, KUN ZHANG¹, ELIAS J RUGEN¹, XI CHEN^{1,4}, SÖREN JENSEN⁵ AND GRAHAM A. SHIELDS¹

The Ediacaran-Cambrian transition was characterised by extreme environmental instability, the near disappearance of the Ediacaran biota, and the emergence of metazoan diversification [1]. This transition was also marked by strong perturbations to the global carbon cycle, including the basal Cambrian carbon isotope excursion (BACE). However, the causes for biological innovations and negative δ^{13} C excursions during the Ediacaran-Cambrian transition interval remain controversial, particularly the relationship between ocean oxygenation and early animal evolution. Here, we present new carbonate carbon (δ^{13} C), sulfur $(\delta^{34}S)$ and uranium $(\delta^{238}U)$ isotope data from two fossiliferous sections (Majada de Andaluz and Arrocampo) of the Central Iberian Zone (CIZ), Spain. Both sections expose the Villarta Formation, and potentially preserve the BACE excursion. A negative δ¹³C excursion was found to precede the first appearance of Treptichnus pedum at the Arrocampo section, and to follow the last occurrence of Cloudina in the lower limestone unit at the Majada section [2],[3]. The new δ^{13} C, δ^{34} S and δ^{238} U data help us to further constrain chemostratigraphic correlation of the Ediacaran-Cambrian boundary in the CIZ, and also facilitate a detailed assessment of the ocean redox state and the coupled C-S biogeochemical cycles during this significant period of Earth history.

References

- [1] Alvaro, Jensen, Valverde-Vaquero (2024), *Newsl Stratigr*. 57, 323–357.
- [2] Bowyer, Zhuravlev, Wood, Shields, Zhou, Curtis, Poulton, Condon, Yang, and Zhu (2022), *Earth-Science Reviews* 225, 103913.
- [3] Zhang, Shields, Zhou, Strauss, Struck, and Jensen (2024) *Precambrian Research* 411, 107526.

¹University College London

²Johannes Gutenberg-Universität

³Royal Holloway University of London

⁴University of Southampton

⁵Universidad de Extremadura