Can Lithium Isotopes (⁷Li/⁶Li) Trace Reverse Weathering over the Cenozoic?

BOR-JIUN JONG¹, ANN G DUNLEA², LINDA V. GODFREY³ AND DANIELLE SANTIAGO RAMOS¹

¹Department of Marine and Coastal Sciences, Rutgers University ²Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution

Reverse weathering reactions in marine sediments lead to the formation of in-situ authigenic clays and the release of CO₂ back into the ocean-atmosphere system. As a result, reverse weathering may play a significant role in the global carbon cycle and climate regulation over geologic timescales. Recent studies suggest that a decline in reverse weathering rates and the associated reduction in CO₂ emissions may have contributed to the Cenozoic climate cooling1. However, direct records of variations in marine authigenic clay abundance remain uncertain, which is mainly due to the difficulty in isolating authigenic phases from bulk marine sediments. To address this, here we propose to use lithium isotope ratios (δ^7 Li) of bulk marine sediments as tracers of marine authigenic clay formation with the ultimate goal of applying this tool to quantify marine reverse weathering rates. We analyzed δ^7 Li compositions of bulk marine sediments from the South Pacific Gyre (SPG), collected during Integrated Ocean Drilling Program (IOPD) Expedition 329. SPG sites are ideal case study locations due to lower sedimentation rates and therefore less dilution of authigenic phases by detrital material. Bulk sediment analyses of SPG sediments yielded δ^7 Li values ranging from +2.87% to +11.73% in samples spanning 97.1 Ma to 0.1 Ma from Holes U1366D/F and U1369C. A main feature of these results is a marked decrease in δ^7 Li compositions sediments from +9.09%~+11.73% +2.87\%\~+6.31\% over the last 70 million years. Integrated with existing multi-element and δ^{26} Mg analyses from the same cores, this decrease in $\delta^7 Li$ of bulk SPG sediments supports a decline in authigenic clay abundance over the Cenozoic as previous studies suggested. Paired with multivariate statistical modeling of sediment compositions at these SPG sites1, we show that Li isotopes are effective tracers of reverse weathering in marine sediments.

¹ Dunlea et al. (2017) Nature Communications 8, 844. doi:10.1038/s41467-017-00853-5

³Department of Earth and Planetary Sciences, Rutgers University