Anaerobic oxidation of sulfides by reactive halogens under the simulative martian conditions

JIE LI $^{\!1},$ GUIXIN XING $^{\!1},$ LU PAN $^{\!1},$ JOHN MUSTARD $^{\!2},$ YUYAN ZHAO $^{\!3}$ AND JIHUA HAO $^{\!4}$

¹University of Science and Technology of China

The modern Mars may have subsurface liquid water on its subsurface, where possible life may survive. However, progressive water-rock interaction could tend to deplete oxidants in the subsurface, limiting the availability of some redox-sensitive nutrients. Here, we conducted experiments to simulate the dissolution sulfides by reactive halogens under low-temperature and anoxic conditions relevant with the martian surface. Our results show effective oxidation of pyrite by chlorates even under low-temperature conditions. We also observed the release of some concurrent transition metals in the pyrite. Based on the measured reaction rates, we further developed a weathering model to estimate the global significance of this process. Our findings may provide a predictive framework to understand the dynamic habitability of martian subsurface.

²Brown University

³Chengdu University of Technology

⁴School of Earth and Space Sciences, University of Science and Technology of China