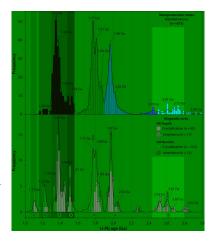
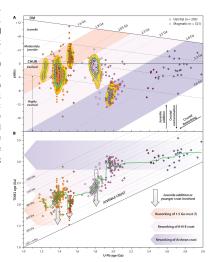
Zircon U-Pb and Lu-Hf Constraints on the Paleo- to Mesoproterozoic Evolution of the Southwest Angolan Shield (Congo Craton).

EZEQUIEL JOSÉ ESTREMINA CARNEIRO BRANDÃO FERREIRA, PHD^{1,2}, JEREMIE LEHMANN³, JOSÉ FELICIANO RODRIGUES⁴, BEN HAYES⁵, DR. ENRIQUE MERINO MARTÍNEZ⁶, LORENZO MILANI⁷, GRANT M. BYBEE⁵, TRISHYA OWEN-SMITH³, JOSÉ LUIS GARCÍA LOBÓN¹, COLOMBO TASSINARI⁸, HENRIETTE UECKERMANN³, KEI SATO⁸, PAULO B. SILVA^{2,4}, JOÃO CORREIA², JOSÉ LABAREDAS², LAURENT DUARTE², ANNA MOLEKWA³, JOSÉ MANUEL ^{9,10} AND AMÉRICO DA MATA LOURENÇO VICTORINO⁹


¹Instituto Geológico y Minero de España


The crustal evolution of the Angolan Shield (AS) remains poorly constrained. To address this, we analysed U-Pb and Lu-Hf isotopes in detrital and igneous zircons to determine the age and provenance of extensive sedimentary strata in southwest Angola, and use them as a proxy for the Paleoproterozoic to Mesoproterozoic evolution of the southwest AS.

Mesoproterozoic maximum depositional ages between 1334 \pm 8 Ma and 1184 \pm 23 Ma for the Iona, Cahama, and Ompupa siliciclastic rocks refute previous correlations with the Paleoproterozoic Chela Group. Detrital zircon U-Pb and Lu-Hf isotopes closely match those of magmatic rocks from the southwest AS, indicating that Mesoproterozoic siliciclastic rocks were primarily derived from the AS.

Integrating detrital and igneous zircon U-Pb and Lu-Hf isotopes with whole-rock Sm-Nd isotopes reveals significant spatio-temporal heterogeneities in the AS. We identify two contrasting Paleoproterozoic (2.05–1.73 Ga) settings with distinct U-Pb age distributions and Hf-Nd isotopic signatures. Early-Orosirian Eburnean magmatism (2.05–1.93 Ga) exhibits strongly negative ${\rm EHf}_{(0)}$ and ${\rm ENd}_{(0)}$, reflecting reworking of Archean crust in a possible collisional setting. A shift towards more radiogenic ${\rm EHf}_{(0)}$ and ${\rm ENd}_{(0)}$ at -1.87-1.73 Ga suggests a change in geodynamics, with Late-Orosirian to early-Statherian magmatism of the Epupa-Namibe Metamorphic Complex (ENMC) likely reflecting the development of an extensional accretionary orogen along the southern margin of the Eburnean-Archean crustal block. Mesoproterozoic magmatism (\sim 1.56–1.50 Ga) displays suprachondritic ${\rm EHf}_{(0)}$ and ${\rm ENd}_{(0)}$ values, indicating

juvenile crustal growth. The Kunene Anorthosite-Mangerite-Charnockite-Granite Complex (KC: ~1.50-1.36 Ga) exhibits sawtooth-shaped evolution trends, ranging from highly evolved to moderately juvenile compositions, consistent with mixing between reworked ENMC crust and juvenile melts in a longlived accretionary orogen back-arc region. Post-KC magmatism (~1.36-1.30 Ga) shows a slightly increased juvenile contribution, potentially linked to renewed slab retreat and back-arc extension or melting of ENMC and ~1.56-1.50 Ga juvenile crust during extensional collapse following an orogenic event. Subsequent ~1.29-1.18 Ga magmatism involved reworking of ~1.56-1.50 Ga crust and/or mixing between ENMC- and mantle-derived melts. Regionally extensive, undeformed ~1.13-1.10 Ga mafic dikes and sills mark the termination of Mesoproterozoic magmatism in the AS. Our new data enhance the understanding of the Archean to Mesoproterozoic crustal evolution of the AS.

²UTE PLANAGEO (LNEG)

³University of Johannesburg

⁴Laboratório Nacional de Energia e Geologia

⁵University of the Witwatersrand

⁶Instituto Geológico y Minero de España (IGME-CSIC)

⁷University of Pretoria

⁸University of São Paulo

⁹Instituto Geológico de Angola

¹⁰Universidade Agostinho Neto