U-Pb LA-ICP-MS Zircon-Monazite-Columbite-Tantalite Dating of Mapatizya Lithium Pegmatites in the Choma-Kalomo Block, Southern Zambia

IRENA PEYTCHEVA¹, CRYTON PHIRI², MARKO HOLMA³, STOYAN GEORGIEV¹, ELITSA STEFANOVA¹
AND MILEN STAVREV¹

Zambia is an African country with a high potential to supply cobalt, nickel, lithium, and other critical and strategic raw materials, but there is a scarcity of data on the mineralogical associations and geochemical signatures of many medium- to large-scale deposits. Here, we present the first results on the geochronology of the Mapatizya lithium pegmatites (MLP). They are hosted within the Paleo- to Mesoproterozoic Choma-Kalomo Block (CKB) in southern Zambia. The CBK consists of metasedimentary rocks intruded by S-type granites of the Mesoproterozoic Choma-Kalomo Batholiths. Previous U-Pb dating in the region revealed the complexity of this granitic system, spanning in age from ~1345 to ~1170 Ma [1]. Three types of pegmatites have been recognised within the metasedimentary sequence and the granites of the CKB: (1) quartz-muscovite, (2) quartz-muscovite-biotite-feldspartourmaline, and (3) cassiterite-bearing quartz muscovite ± feldspar pegmatites. Mapatizya pegmatite system reveals features of group (2)-(3) granitic pegmatites, commonly classified as LCT (lithium-cesium-tantalum) type.

U-Pb LA-ICP-MS dating was applied to zircon and monazite from the host granite and to columbite-tantalite (coltan) from the MLP, which also intrude the metasedimentary basement of the CKB. The zircons are metamict and mainly discordant, with only two grains being (sub)concordant at 1189 \pm 37 Ma (all uncertainties 2σ). The monazites of the granite are mostly concordant, ranging in age from 1169 ± 14 Ma to 1302 ± 44 Ma, with a main group of concordant monazites at 1205 ± 15 Ma. Age data for coltan from the MLP are primarily concordant, with few subconcordant grains. The main group is dated between 1126 ± 16 Ma and 1060 ± 15 Ma, yielding a Concordia age of 1080.4 ± 5.0 Ma, while a second group defines an age of 1001.6 ± 8.8 Ma. We, therefore, suggest that the age of the pegmatites is >1080 and <1200 Ma and that columbite-tantalite was slightly altered by a tectonic-metamorphic event around 950-1000 Ma.

Acknowledgments: This research is a contribution to the AGEMERA project funded by the EU Horizon Europe research and innovation program, grant 101058178.

[1] Glynn et al. 2017. Precambrian Research 298:421–438.

¹Geological Institute, Bulgarian Academy of Sciences

²University of Zambia (UNZA)

³Kerttu Saalasti Institute, Oulu University