Potassium isotopic constraints on Earth's earliest stable continental crust

DR. HAMED GAMALELDIEN, PHD^{1,2}, KUN WANG³, XINMU J ZHANG⁴ AND HUGH SMITHIES⁵

¹Polar Research Center, Khalifa University

The formation of Earth's felsic continental crust is a unique process among rocky planets, with Archean cratons (4.0-2.5 Ga) preserving its earliest remnants. These cratons primarily consist tonalite-trondhjemite-granodiorite (TTG) representing early crust formation, and potassic granites, marking later stabilization. However, the origins of their mafic source rocks and formation mechanism—remain debated. Here, we present high-precision potassium (K) isotopic data from TTGs and potassic granites (3.46-2.67 Ga) from the Pilbara and Yilgarn Cratons to track their evolution. TTGs show δ⁴¹K values ranging from -0.27 ± 0.07 % to -1.01 ± 0.06 %, while potassic granites range from -0.35 ± 0.08 % to -0.54 ± 0.04 %—both lighter than mantle values ($\delta^{41}K = -0.42 \pm 0.08$ %). Additionally, many TTGs exhibit mantle-like zircon δ¹⁸O values (5.08–6.10‰), whereas potassic granites show heavier signatures (5.58–7.10‰). The O-K isotopic composition of TTGs reflects both mantle-like signatures and low-temperature hydrothermally altered basalts, indicating their formation through partial melting of upper basaltic crust (i.e., seawater-altered crust). In contrast, potassic granites likely formed from melting pre-existing TTGlike crust. These results suggest that Archean TTG source incorporated seawater-altered oceanic basalts, while potassic granites resulted from the reworking of juvenile crust. This supports a model of continental crust growth driven by early hydrothermal alteration of mafic crust and subsequent crustal reprocessing within the Archean crust that may not require subduction.

²Khalifa university

³Washington University in St. Louis

⁴Scripps Institution of Oceanography

⁵Geological Survey of Western Australia