Reconstructing Holocene variability of the Atlantic Meridional Overturning Circulation using ²³¹Pa/²³⁰Th

LUKAS GERBER¹, JÖRG LIPPOLD², FINN SÜFKE², OLE VALK², PIERRE TESTORF³, MANUEL EHNIS², SASKIA TAUTENHAHN², LARS MAX⁴, CRISTIANO M. CHIESSI⁵, MARCEL REGELOUS⁶, SÖNKE SZIDAT³, OLIVER FRIEDRICH² AND FRERK PÖPPELMEIER³

The Atlantic Meridional Overturning Circulation (AMOC) plays an important role in regulating Earth's climate by redistributing heat and nutrients between both hemispheres. Variations in its strength have a global impact, making it one of the planet's key climate tipping elements. While there has been evidence for large AMOC variations during glacials and their terminations, AMOC variations during the Holocene are less well constrained.

Here, we analyse the Holocene mean deep water advection strength in the North Atlantic by making use of five millennial-resolution sedimentary ²³¹Pa/²³⁰Th records. We quantitatively estimate past AMOC volumetric flow rates from the geochemical results, by employing the proxy-enabled Bern3D Earth System Model. To achieve this, we simulated idealized freshwater perturbations and assessed the sensitivity of sedimentary ²³¹Pa/²³⁰Th to the AMOC variations at each core site location. Based on the core-specific responses of ²³¹Pa/²³⁰Th to the simulated AMOC variations, we converted these geochemical records into changes in AMOC strength (in Sverdrups, Sv), allowing us to establish a new composite Holocene record.

We find that the AMOC recovered from its weakened deglacial state during the Early Holocene, until 9.5 ka BP. Its pre-industrial strength (18.5 \pm 1.5 Sv) was reached around 6.5 ka BP, and remained constant. No significant AMOC changes were detected during the 4.2 ka BP event. The only notable Holocene AMOC weakening occurred between 9-8 ka BP (16 \pm 1.3 Sv), coinciding with the final disintegration of the Laurentide Ice Sheet and the associated meltwater pulses into the North Atlantic.

Throughout the Holocene, we found no evidence of an AMOC slowdown as severe as projections of high-emission scenarios indicate for the ongoing anthropogenic climate change.

¹Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany

²Heidelberg University

³University of Bern

⁴MARUM, University of Bremen

⁵University of São Paulo

⁶GeoZentrum Nordbayern, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany