Seasonal dynamics of greenhouse gases in a large river

INGEBORG BUSSMANN 1 , CLAUDIA SCHÜTZE 2 , UTA KÖDEL 2 , NORBERT KAMJUNKE 2 AND MATTHIAS KOSCHORRECK 2

¹Alfred Wegener Institut für Polar und Meeresforschung ²Helmholtz-Zentrum für Umweltforschung

Rivers represent a significant source of greenhouse gases (GHGs), with the three main gases emitted being carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O). To comprehend the spatio-temporal variability of these gases, it is essential to consider the regulating factors that influence their concentration. In larger rivers GHG concentrations are mostly regulated by inriver processes. Thus, the concentration of all these GHGs is supposed to be governed by the trophic state and the activity of phytoplankton.

We performed a monthly monitoring for the three GHGs at the river Elbe (Germany) over 5 years (2020-2024); together with chlorophyll concentrations and other basic water chemical variables.

CO₂ concentrations showed a clear seasonal pattern with minimum values in summer, mainly driven by light availability concentration (photosynthesis). chlorophyll concentrations showed an opposite seasonal dynamic with maximum values in summer, as indicated by its dependence on temperature and particulate organic carbon (POC). N₂O concentrations were mostly near saturation and mainly determined by temperature dependent solubility. The total GHGpotential of the three gases in terms of CO₂ equivalents was dominated by CO2 and its seasonal cycle. We successfully used this comprehensive dataset to develop data-driven models based on machine-learning methods, reaching coefficients of determination greater than 0.75. Looking ahead to subsequent research these models enable predictions of GHG concentrations and emissions under potential future climate scenarios.