Noble Gas Tracing of CO₂ Injection Fluids for Carbon Capture and Storage (CCS) using the miniRUEDI

MATTHIAS S BRENNWALD¹, JONAS S JUNKER², ROLF KIPFER³, ANNE C OBERMANN², MARTIN VOIGT⁴, CHUAN WANG^{1,5} AND ALBA ZAPPONE⁶

¹Eawag

³Eawag, Swiss Federal Institute of Aquatic Science and

Technology

⁴Carbfix

⁵now at Hohai University

⁶ETH Zurich

CO₂ mineral sequestration in basaltic aquifers is a promising method for long-term carbon storage, where injected CO₂ reacts with basalt to form stable carbonate minerals. While previous studies have demonstrated the feasibility of CO₂ mineralization, tracking injected CO₂-bearing fluids remains challenging. Traditional gas tracer approaches, such as ¹⁴CO₂, SF₆ and SF₅CF₃, pose environmental risks, logistical constraints, and high costs. To overcome these limitations, we deployed a "miniRUEDI" gas-equilibrium membrane-inlet mass spectrometer (GE-MIMS) for continuous and autonomous onsite dissolved gas analysis.

As part of the DemoUpStorage project, a CO₂ injection experiment was conducted near Helguvik, Iceland, where CO₂ was dissolved in seawater-derived groundwater before injection into a basaltic aquifer. Before dissolution, the CO₂ gas was labelled with He, which was tested as an inert tracer to track the dynamics of the CO₂ and the injected fluids in the aquifer. The miniRUEDI continuously monitored the partial pressures of CO₂, He, and other naturally occurring gases (N₂, O₂, Ar, Kr) in groundwater over an one-year period, providing real-time insights into CO₂ behavior underground.

Results confirm that He (or any other stable noble gas) effectively traces the movement of injection fluids within the aquifer. The He tracer appeared at a water extraction well about 100 m downstream of the fluid injection, indicating the arrival of the injection fluids. In contrast, the partial pressure of CO₂ did not increase at the extraction well, indicating that CO₂ experienced retardation or was removed from the water, which aligns with the anticipated mineralization of CO₂. Furthermore, the deployment of the GE-MIMS technique revealed no detectable increase or anomalies in CO₂ levels at a shallow observation well next to the injection borehole, indicating limited upward migration and reinforcing the effective retention of CO₂ in the aquifer.

This study highlights the potential of on-site mass spectrometry for real-time CO₂ and noble gas monitoring in carbon sequestration projects. The miniRUEDI provides a scalable and cost-effective alternative to conventional tracer studies, making it a key tool for future carbon storage efforts. The findings will support upcoming CO₂ sequestration projects

²ETH Zürich