Evolution of the oceanic Mg cycle through time: Insights from δ^{26} Mg record of marine carbonate (brachiopods) and authigenic clay (glauconite) archives

JURAJ FARKAS¹, KLAUS WALLMANN², XIN-YUAN ZHENG³, DR. STEFAN LÖHR⁴, ZHUFU SHAO¹, JAN SRODON⁵ AND UWE BRAND⁶

This contribution presents a compilation of magnesium (Mg) isotope variations (δ^{26} Mg proxy data) measured in modern and ancient marine archives, including (i) biogenic skeletal carbonates (calcitic brachiopod shells), and (ii) marine authigenic clays (glauconite pellets), covering the Phanerozoic Eon (last ~540 Ma) and the Ediacaran/Cambrian transition (~580 to 540 Ma). The representative Mg isotope fractionation factors $(\Delta^{26}\text{Mg})$ between present-day seawater and the above archives/minerals have been determined in modern settings, yielding Δ^{26} Mg values or offsets of ~1.2% and ~0% for calcitic shells and glauconite pellets, respectively. The acquired Δ^{26} Mg offsets are applied to the measured δ^{26} Mg (DSM3) values from ancient brachiopods and glauconites to infer the plausible Mg isotope composition of paleo-seawater through time. Briefly, both marine archives or proxy records suggest a gradual but rather limited (<0.5%) increase in the δ^{26} Mg of paleo-seawater with time (from the present to the Cenozoic and Mesozoic), which is in general agreement with other recently published marine δ²⁶Mg records from dolomites and/or halite-fluid inclusions [1]. In contrast, our reconstructed δ^{26} Mg trend(s) for the Paleozoic seawater differs - based on the archives used where the brachiopod-based δ^{26} Mg record suggests a similar-tomodern or isotopically lighter paleo-seawater (relative to presentday oceans), while the best-preserved glauconite based δ^{26} Mg data indicate isotopically heavier Paleozoic (and Ediacaran) oceans compared to recent. The generated marine δ^{26} Mg trends (brachiopod vs. glauconite data) will be interpreted and modelled in terms of (i) possible diagenetic effects, and (ii) long-term changes in the oceanic Mg cycle through time [2], with implications for key drivers of the Phanerozoic seawater chemistry and marine Mg/Ca ratios, namely, the carbonate (dolomitization) vs silicate (hydrothermal, reverse weathering) oceanic Mg output fluxes.

References

[1] Xia Z. et al. (2024) The evolution of Earth's surficial Mg cycle over the past 2 billion years. Science Advances, Vol. 10, p.

1-10. DOI: 10.1126/sciadv.adj5474

[2] Farkas J. et al. (2025) Alkalinity and elemental cycles in present and past ocean: Insight from geochemical modelling and alkali and alkaline earth metal isotopes, Treatise on Geochemistry, Third Edition, Vol. 5. p. 33-87. doi.org/10.1016/B978-0-323-99762-1.00037-1

¹University of Adelaide

²GEOMAR Helmholtz Centre for Ocean Research Kiel

³University of Minnesota - Twin Cities

⁴Metal Isotope Group (MIG), Earth Sciences, University of Adelaide

⁵Institute of Geological Sciences, Polish Academy of Sciences

⁶Brock University