Abiotic Polycyclic Aromatic Hydrocarbons in Melt Inclusions of a Mantle Xenolith from Tahiti, part of the Society Hotspot Track

ITARU MITSUKAWA¹, AKIRA MIYAKE¹, YOHEI IGAMI¹, TETSU KOGISO¹, NORIKATSU AKIZAWA², JUNYA MATSUNO³, MEGUMI MATSUMOTO⁴, AKIRA TSUCHIYAMA^{5,6}, KENTARO UESUGI⁷, MASAHIRO YASUTAKE⁷, TOMOKI TAGUCHI⁸, YOSHIO TAKAHASHI⁹, SHOHEI YAMASHITA¹⁰ AND SHOTA OKUMURA¹

¹Kyoto University

The abiotic formation of organic matter (OM) in the Earth's mantle has been proposed since the 1870s [1]. High-pressure and high-temperature experiments and theoretical studies have demonstrated that simple hydrocarbons polymerize into more complex OM [2]. In this context, polycyclic aromatic hydrocarbons (PAHs) detected in xenocrysts from kimberlite pipes are of particular interest [3]. Although such PAHs are interpreted to have an abiotic origin, their distribution in the mantle and formation processes remain poorly understood.

Here, we report melt inclusions containing PAHs within a clinopyroxene (Cpx) grain from a spinel harzburgite xenolith collected on Tahiti, part of the Society hotspot track. Elemental analyses using energy-dispersive spectroscopy (EDS) revealed that the host Cpx grain has lower Ti and Al contents and higher Mg# than other Cpx grains in the same sample. Our X-ray nanocomputed tomography (XnCT) analysis revealed that the inclusions consist of silicate glass, base-metal sulfides, platinum-group minerals, and C-O-H phases. The presence of PAHs within the C-O-H phases was consistently confirmed by Raman microscopy, wide-field fluorescence microscopy, and X-ray absorption near-edge spectroscopy (XANES). Furthermore, XANES analyses demonstrated that these PAHs contain few aliphatic chains or functional groups and coexist with CO and CO₂ in the C-O-H phases.

The detected PAHs are unlikely to be contaminants, as their signals are exclusively observed within the inclusions. The elemental composition of the host Cpx grain supports its deeper origin [4]. Reduced species, such as PAHs and CO are present in the C-O-H phases, indicating that they were trapped under reducing conditions in the deeper regions of the upper mantle [5]. We propose that aromatization of simple hydrocarbons occurred

in the C-O-H phases, abiotically forming PAHs under high P-T conditions in the upper mantle. Our discovery suggests the widespread presence of PAHs in the sub-oceanic upper mantle.

[1] Wang et al. (2023), Acta Geologica Sinica - English Edition 97, 288-308. [2] Kolesnikov et al. (2009), Nature Geoscience 2, 566-570. [3] Garanin et al., (2011), Moscow University Geology Bulletin 66, 116-125. [4] Adam and Green (1994), Chemical Geology 117, 219-233. [5] Frost and McCammon (2008), Annual Review of Earth and Planetary Sciences 36, 389-420.

²Hiroshima University

³Kyushu University

⁴Tohoku University

⁵Ritsumeikan University

⁶Chinese Academy of Sciences (CAS)

⁷SPring-8

⁸Waseda University

⁹The University of Tokyo

¹⁰High Energy Accelerator Research Organization (KEK)