Alkenone carbon isotopic fractionation-based CO2 proxy records and Cenozoic climate sensitivity

HEATHER STOLL 1 , THOMAS TANNER 2 , JOSÉ GUITIÁN 3 , LAURINE JONK 4 , RETO WIJKER 1 , PRATIGYA J POLISSAR 5 , IVAN HERNANDEZ-ALMEIDA 6 , LAURA ARNOLD 2 , SAMUEL PHELPS 7 , HONGRUI ZHANG 8 , MADELEINE SANTOS 2 , MAJA LEUSCH 2 AND ADDISON RICE 2

¹ETH Zürich

Alkenone carbon isotopic fractionation (ep) provides an important component of the pCO2 dataset and is one of few proxies available to investigate past orbital cycles in CO₂. An inverse relationship between ep and benthic d¹⁸O, implying high CO₂ during cold glacial periods, has been reported from the Mid and Late Pleistocene. But, this relationship between ep and benthic d¹⁸O breaks down across the long term records for much of the Oligocene to Miocene, underscoring either changes in the relationship of CO₂ to deep ocean temperature and ice volume, and/or different influences on the ep or benthic d18O proxy. Records of mid and high latitude surface ocean temperatures (SST) from the mid-Oligocene through early Miocene, from the same sites as the ep records, provide an alternative approach to assess the relationship between CO₂ and climate. We find that the long term Oligocene-Early Miocene decline in ep coincides with declining Southern Ocean SST. But, North Atlantic alkenone SST temperature shows a complex relationship with ep. Our new high resolution ep records spanning key Oligocene to Miocene time intervals, document 100 ky cycles in ep of 1 to >2 permil, suggesting significant orbital scale CO2 variation and highlighting the potential for aliasing in low resolution ep records. At the orbital scale, the relationship between ep and benthic d¹⁸O in some intervals exhibits a Pleistocene-like relationship, whereas in other intervals ice growth at higher CO₂ is suggested. In evaluating the magnitude of CO2 changes implied by the ep record, we assess the potential influence of several factors on ep: growth rate driven by temperature change, cell size, and changing influence of carbon concentrating mechanisms and ocean DIC concentration.

²ETH Zurich

³Universidad de Vigo

⁴Utrecht University

⁵University of California, Santa Cruz

⁶PAGES (Past Global Changes)

⁷LDEO

⁸Tongji University