Thermochemical oxidation of hydrocarbons in deep-buried clastic strata: Features and mechanism constrained by differential distribution of oil, gas and water

DR. XUN KANG, PHD 1 , PROF. JINGQIANG TAN, PHD 1 AND WENXUAN HU 2

¹Central South University ²Nanjing University

Oxidation of hydrocarbon plays an important role in fluid-rock interactions, hydrocarbon generation and evolution in the Earth's crust. To unravel its geological features and mechanism, we conducted a comparative study in the Lower Triassic red beds in the Mahu Sag (Junggar Basin, NW China). The strata contain a variable oil, gas and water content as well as abundant highvalence Fe/Mn oxide. In the west slope area containing oil and gas, but no free pore-water, three generations of authigenic calcite occur: (i) non-luminescent, early diagenetic calcite (MnO < 0.3%, $\delta^{13}C_{VPDB}$: -5.6 to -4.1%, $T\Delta_{47}$ =40°C); (ii) bright-orange luminescent late-stage I calcite (0.75–5.23% MnO, δ^{13} C: –51.4 to -25.8%, $T\Delta_{47}=81-107$ °C), and (iii) dull-orange late-stage II calcite (4.10–12.93% MnO, δ^{13} C: –91.4 to –30.9%, $T\Delta_{47}$ =107– 132°C). The δ^{13} C values as low as -91% indicate that late-stage II calcite is mainly derived from the thermochemical oxidation of methane (δ^{13} C: -46.8 to -39.3%) induced by high-valence Mn/Fe oxide, whereas late-stage I calcite is the final product of both oxidation of methane and C2+ hydrocarbon. For late-stage I calcite, hydrocarbon oxidation was most likely promoted by high temperature. The higher precipitation temperature of late-stage II calcite demonstrates that the oxidation of methane requires higher activation energies than C_{2+} hydrocarbons.

In the east slope area, the strata contain free pore-water and oil/gas. Hydrocarbon oxidation also differentially occurred in oil layer, oil-water transition zone (OWTZ), and water layer. In the oil layer, the oxidation of hydrocarbons including methane generates ¹³C-depleted CO₂, causing the dissolution of alkaline minerals like K-feldspar, accompanied by the generation of solid bitumen, ferrochlorite, and extremely ¹³C-depleted calcite (4-16% MnO, δ^{13} C<-50%). In OWTZ, the presence of water promotes hydrocarbon oxidation, generates amounts of organic acids and CO2, significantly promoting the extensive dissolution of K-feldspar, forming abundant secondary porosity, ferrichlorite, and ¹³C-depleted calcite (2–3.5% MnO, δ¹³C: –50 to -35%). In the water layer, the organic acids and CO₂ produced in OWTZ diffuse downward, the dissolution of alkaline minerals decreases, and precipitating less calcite (<1.5% MnO, δ^{13} C:-35 to -20‰).