⁴¹Ca dating marine samples from middle and late Pleistocene

DR. HUANG HUANG 1 , MR. WEIWEI SUN, PHD 2 , WEI JIANG 2 , ZHENG-TIAN LU 2 , JUN TIAN 3 , TIAN XIA 2 , GUOMIN YANG 4 , HUI-MIN ZHU 2 , YIXU ZHANG 3 , JIYAO TAN 3 AND MICHAEL BENDER 5

⁴¹Ca (half-life = 99 ka) is a cosmogenic radionuclide that has long been proposed as a promising dating tool for Pleistocene geological sample. However, its practical application has been hindered by two main challenges: 1) its extremely low natural abundance (41Ca/Ca < 10-15) and 2) variable initial 41Ca/Ca ratios. In this study, we applied the advanced Atom Trap Trace Analysis (ATTA) technique to measure ⁴¹Ca in seawater samples from all major oceans. Our results indicate that the 41Ca/Ca ratio in seawater is consistent across regions, despite contamination by nuclear fallout in surface waters. Assuming a constant 41Ca/Ca ratio in seawater over time, we applied this value to date calcium-rich marine samples, such as foraminifera and coldwater corals. The ⁴¹Ca ages are consistent with nominal ages derived from other dating methods, such as ¹⁸O stratigraphy, radiocarbon and U-series dating, with the oldest sample dating to approximately 500 ka. These findings validate the reliability of ⁴¹Ca as a dating tool for Pleistocene marine samples.

¹Laoshan Laboratory

²University of Science and Technology of China

³Tongji University

⁴Hefei National Laboratory

⁵Princeton University