The geologic history of marine dissolved organic carbon from iron oxides

NIR GALILI¹, STEFANO M. BERNASCONI¹, ALON NISSAN¹, URIA ALCOLOMBRI², GIORGIA AQUILA¹, MARCELLA DI BELLA³, THOMAS BLATTMANN¹, NEGAR HAGHIPOUR⁴, FRANCESCO ITALIANO⁵, MADALINA JAGGI¹, IFAT KAPLAN-ASHIRI⁶, KANG SOO LEE⁷, MAXWELL LECHTE⁸, SUSANNAH PORTER⁹, CARA MAGNABOSCO¹, MAXIM RUDMIN¹⁰, ROBERT SPENCER¹¹, ROMAN STOCKER¹, ZHE WANG¹, STEPHAN WOHLWEND¹² AND **JORDON D. HEMINGWAY**¹

Dissolved organic carbon (DOC) is the largest reduced carbon reservoir in modern oceans. Its dynamics regulate marine communities and atmospheric CO₂ levels, whereas ¹³C compositions track ecosystem structure and autotrophic metabolism. However, the geologic history of marine DOC remains entirely unconstrained, hindering our ability to mechanistically reconstruct coupled ecological biogeochemical evolution. To address this, we developed and validated the first-ever direct proxy for past DOC signatures using co-precipitated organic carbon in iron ooids, and we applied this to 26 marine iron ooid-containing formations deposited over the past 1650 million years. Predicted DOC concentrations were near modern levels in the Paleoproterozoic then decreased by 90-99 % in the Neoproterozoic before sharply rising in the Cambrian. We interpret these dynamics to reflect three distinct states: (i) small, single-celled organisms combined with severely hypoxic deep oceans; (ii) larger, more complex organisms and little change in ocean oxygenation; (iii) continued organism growth and a transition to fully oxygenated oceans. Furthermore, modern DOC is significantly ¹³C-enriched relative to the Proterozoic, possibly due to changing autotrophic carbonisotope fractionation driven by biological innovation. Our results reveal previously undiscovered connections between the carbon cycle, ocean oxygenation, and the evolution of complex life.

¹ETH Zürich

²Hebrew University

³National Institute of Oceanography and Applied Geophysics

⁴ETH Zurich

⁵National Institute of Geophysics and Volcanology

⁶Weizmann Institute of Science

⁷Ulsan National Institute of Science and Technology

⁸McGill University

⁹University of California Santa Barbara

¹⁰Tomsk Polytechnic University

¹¹Florida State University

¹²University of Bern