Did atmospheric carbon dioxide decline due to the evolution of trees in the Late Paleozoic as suggested by Carbon Cycle Models?

ADIT GHOSH, A. JOSHUA WEST AND FRANK A CORSETTI

University of Southern California

The hypothesized decline in atmospheric carbon dioxide (pCO₂) during the Late Paleozoic Era (~420–300 million years ago) remains unresolved, despite predictions from seminal geologic models like GEOCARB [1]. These models attribute the pCO₂ drawdown to biological innovations, particularly the evolution of deep-rooted trees that enhanced silicate weathering. However, empirical evidence for this decline remains contentious. While some paleosol carbonate proxies [2] support a stepwise decrease in pCO₂, others do not [3]. Moreover, recent modeling studies [4] challenge this hypothesis, citing carbon budget mass balance constraints.

To resolve this debate, we propose an alternative approach. We aim to reconstruct terrestrial silicate weathering through this period by analyzing a high-quality proxy of chemical weathering, i.e. Lithium isotopes ($\delta^7 \text{Li}$) preserved in brachiopods, at a high stratigraphic resolution. If a decline in pCO₂ occurred during the Late Paleozoic due to enhanced soil formation (as suggested by the GEOCARB model), it should correspond to a significant increase in terrestrial chemical weathering observable in the rock record. Ultimately, this reconstruction will allow us to determine whether the hypothesized pCO₂ model(s) such as GEOCARB, that base pCO₂ drawdown during this period on enhanced chemical weathering, need reevaluation (no change or depletion in $\delta^7 \text{Li}$ over this record) or if plant root evolution did result in enhanced rates of silicate weathering, resulting in lower pCO₂ during the Late Paleozoic (enriched $\delta^7 \text{Li}$ over this record).

This research is crucial in understanding the geological carbon cycle during the Late Paleozoic, as it is thought to represent a state-shift in pCO₂, from a world of elevated pCO₂ to the relatively low pCO₂ realm we inhabit today. This work sheds light on the hypothesized role of large organisms (trees with deep roots) in shaping the Earth's physical structure (atmospheric composition), during its past.

References:

- [1] Berner (1992), Geochimica et Cosmochimica Acta 56, 3225-3231.
- [2] Mora, Driese, and Colarusso (1996), *Science 271*, 1105–1107.
- [3] Witkowski, Weijers, Blais, Schouten, and Sinninghe (2018), *Science Advances* 4, 4556-4556.
 - [4] D'Antonio, Ibarra and Boyce (2020), Geology 48, 29–33.