A 3-Billion-Year Lithium Isotope Record from Marine Dolostones

MEBRAHTU F WELDEGHEBRIEL 1 , ZHIGUANG XIA 2 , WEIQIANG LI 3 , MARY LONSDALE 4 , EMMY SMITH 4 , CLARA BLÄTTLER 5 , MATTHEW D NADEAU 1 , JACK G MURPHY 6 , ELIZABETH M NIESPOLO 1 AND JOHN A HIGGINS 1

Changes in the global lithium cycle, as recorded by seawater Li concentrations ($[Li^+]_{SW}$) and isotopic compositions ($\delta^7 Li_{SW}$), have emerged as a promising tracer for reconstructing the longterm controls of seawater chemistry and Earth's geologic carbon and silicon cycles. Recent $\delta^7 \text{Li}_{\text{sw}}$ records from marine fossil shells show a ~8-9 ‰ increase over the past 60 million years (Ma) [1, 2, 3]. Bulk measurements of shallow-water marine carbonates have extended the δ^7 Li record back to 3 billion years ago (Ga), indicating a noisy but dramatic unidirectional increase in mean $\delta^7 \text{Li}_{\text{sw}}$ by ~24% over the Phanerozoic and ~29% since 3 Ga [4]. However, studies of bulk shallow-water carbonate sediments, including drill cores from modern carbonate platforms [5,6], show $\sim 0-15$ % offset from the seawater $\delta^7 \text{Li}$ values due to diagenesis (e.g., marine vs. meteoric) under fluidor sediment-buffered conditions, mineralogy (e.g., calcite vs. aragonite), and clay contamination [7]. Early dolomitized shallow-water carbonates under fluid-buffered conditions in marine settings record the heaviest endmember of the diagenetic spectrum, approaching the seawater-equilibrium $\delta^7 \text{Li}$ values [5,8]. Here, we present δ^7 Li of bulk marine dolostones from samples that were previously used to document $\delta^{26}Mg_{SW}$ [9] and $\delta^{44/40} Ca_{SW}$ [10] to reconstruct $\delta^7 Li_{SW}$ for the past 3 Ga. Dolostones show non-linear $\delta^7 Li$ evolution and have heavier values compared to shallow-water carbonates. The $\delta^7 \text{Li}_{\text{SW}}$ curve from dolostones overlaps with $\delta^7 Li_{SW}$ trends from foraminifera [1], brachiopods [2], and corals [3] over the Mesozoic and Cenozoic, and fluid inclusions in halites over the Neoproterozoic and Phanerozoic Eras [11]. Dolostones suggest modest nonlinear changes in the $\delta^7 \text{Li}_{\text{SW}}$ (<17 %) over the past 3 Ga with minima during the Cretaceous, Cambrian, and Archean and maxima during the Tonian, Permian, and Quaternary Periods.

[1] Misra and Froelich, 2012; [2] Washington et al., 2020; [3] Murphy et al., 2019; [4] Kalderon-Asael et al., 2021; [5] Murphy et al., 2022; [6] Wei and Zhang, 2024; [7] Dellinger et al., 2020; [8] Liu et al., 2023; [9] Xia et al., 2024; [10] Blättler and Higgins, 2017; [11] Weldeghebriel et al., 2024

¹Princeton University

²State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University

³Nanjing University

⁴Johns Hopkins University

⁵University of Chicago

⁶University of Pennsylvania