Origin of Silicic Magmatism at the Katla Volcanic Complex, South Iceland; the Oxygen Isotope Perspective

VALENTIN R TROLL¹, FRANCES M. DEEGAN¹, JUSSI S HEINONEN^{2,3}, CAROLINE SVANHOLM¹, CHRIS HARRIS⁴, CHRISTIAN LACASSE⁵, HARRI GEIGER⁶, AGATA POGANJ¹, MALIN ANDERSSON¹, ROMAIN MEYER⁷ AND THOR THORDARSON⁸

The Katla volcano is a bimodal caldera complex within Iceland's basalt-dominated Eastern Volcanic Zone. To unravel the petrogenesis of silica-rich rocks from Katla, we provide new δ¹⁸O values for almost 60 basaltic, intermediate, and high-silica eruptive rocks, including a number of partially melted felsic xenoliths. The basaltic samples display a range in bulk-rock $\delta^{18}O$ values from +4.3 to +8.5% (n=17) and the sparse intermediate samples from +4.1 to +5.9% (n=3). In turn, silicic rock samples and feldspar separates range from +2.7 to +6.4% (n=38), whereas the felsic xenoliths yield the lowest values from -4.9 to -2.3‰ (n=4). The majority (95%) of the Katla silicic volcanics have δ^{18} O values below typical MORB (ie. $\leq 5.0\%$), ruling out an origin via closed-system fractional crystallisation from the basaltic magmas. We utilised the new $\delta^{18}O$ values to model possible assimilation and fractional crystallisation (AFC) scenarios. The results indicate an early stage of FC/AFC at deepto mid-crustal levels, followed by assimilation of low-δ¹⁸O hydrothermally-altered sub-volcanic materials similar to the low-δ¹⁸O felsic xenoliths at shallow crustal levels. Such a twostage magma evolution is consistent with available geophysical and geobarometry studies at Katla, indicating mid- to deepcrustal as well as shallow-crustal magma domains. Importantly, mafic rocks show dominantly MORB-like δ^{18} O values, whereas low δ^{18} O values occur essentially in silicic rocks only. This implies that the low-δ¹⁸O values at Katla are imposed by interaction with Icelandic crust, rather than reflecting low $\delta^{18}O$ in the underlying mantle sources.

¹Uppsala University

²Åbo Akademi University

³University of Helsinki

⁴University of Cape Town, Department of Geological Science, Rondebosch 7700, Cape Town, South Africa.

⁵SQN 412

⁶University of Freiburg

⁷Service géologique du Luxembourg

⁸University of Iceland