Melt-triggering fluids forming Earth's earliest primitive crust came from the mantle

M. FERNANDA TORRES GARCIA^{1,2}, SILVIA VOLANTE³, MARIA ROSA SCICCHITANO⁴, TIM JOHNSON⁵ AND ANNIKA DZIGGEL¹

- ¹Institute of Geology, Mineralogy and Geophysics, Ruhr Universität Bochum
- ²Department of Earth & Planetary Sciences, ETH Zürich
- ³Geological Institute, Department of Earth & Planetary Sciences, ETH Zürich
- ⁴GFZ Helmholtz Centre for Geosciences
- ⁵Curtin Institute for Geoscience Solutions, School of Earth and Planetary Sciences, Curtin University

By the end of the Archean Eon, a significant portion of Earth's continental crust had formed through partial melting of hydrated mafic rocks, producing sodic granitoids of the tonalite-trondhjemite-granodiorite (TTG) suite. While extensive research has focused on the geodynamic environments of Archean crustal formation, the mechanisms and sources of water required for TTG generation at mid- to low- crustal depths remain poorly understood. To address this, petrography, bulk-rock geochemistry, in-situ O and Hf isotopes, and zircon petrochronology from TTG gneisses of the Lewisian Gneiss Complex (LGC), NW Scotland, are used to identify two compositionally distinct groups of TTGs—hornblende- (hbl-TTGs) and biotite-bearing (bt-TTGs)— and constrain the origin of the water involved in their formation.

In-situ U-Pb geochronology of magmatic zircon cores from both hbl- and bt-TTG yields crystallization ages between 2.7 and 2.9 Ga, coinciding with a major phase of crustal growth in the LGC at ca. 2.8 Ga. Hbl-TTGs are primitive, sodic (K₂O/N₂O 0.26) tonalitic magmas derived from partial melting of low-K mafic rocks, with characteristic Nb/Ta 20, Zr/Sm 85, Gd/Yb 4 and Sr/Y 121. Hbl-TTGs between 2.94 to 2.83 Ga show ϵ Hf values between +3 and -3, while zircon δ^{18} O values (5.4-6.4%) suggest interaction with a predominantly mantlederived water source and a subordinate contribution from isotopically fractionated supracrustal fluids. In contrast, bt-TTGs are less sodic (K₂O/N₂O 0.48) and more evolved, derived from partial melting of low-K mafic and tonalitic sources, with lower Nb/Ta 12, Zr/Sm 65, and higher Gd/Yb 5 and Sr/Y 164, compared to the hbl-TTGs. Zircon ε Hf (+4 to -6) and mantlelike δ^{18} O values (5.2–6.0%) from 2.7 to 2.8 Ga bt-TTGs indicate addition of juvenile material to reworked crust.

Petrography and geochemistry identify two distinct TTG groups with different source characteristics. Hbl-TTGs are primitive magmas that originated from the interaction of a mafic source with a dominantly mantle-derived fluid. In contrast, the slightly younger bt-TTGs formed by partial melting of a more evolved source that interacted with juvenile material and reworking of older crust. These findings suggest that the water required for crustal formation processes was likely already