Advances in the Measurement of δ^{13} C in Silicate Glass by Secondary Ion Mass Spectrometry (SIMS) **HYUNJOO LEE**¹, YVES MOUSSALLAM¹, DR. ESTELLE F. ROSE-KOGA², LAURETTE PIANI³, JOHAN VILLENEUVE³, NORDINE BOUDEN³, ANDREY GURENKO³, BRIAN DAVID MONTELEONE⁴ AND GLENN GAETANI⁴ ¹Lamont-Doherty Earth Observatory, Columbia University ²ISTO, CNRS Secondary Ion Mass Spectrometry (SIMS) has been used for decades to analyze volatile isotopes in silicate melts. However, the analysis of carbon stable isotopes ($\delta^{13}C$) in silicate glasses has been particularly challenging, with few previous attempts yielding high uncertainties. To address this challenge, we characterized and calibrated 31 basaltic and basanitic reference glasses spanning a wide range of CO_2 concentrations and $\delta^{13}C$ values. Tested with large-geometry SIMS at two different facilities, we achieved precision better than $\pm 1.1~\%$ ($\pm 1\sigma$, both internal and external) for CO_2 concentrations above 1800 ppm using a primary beam intensity of less than 5 nA, resulting in a spot size of 10-20 μm , allowing precise analysis of $\delta^{13}C$ in mineral-hosted melt inclusions. This advance opens new avenues for the study of carbon sources in mafic melts and the $\delta^{13}C$ signature of the upper mantle. ³CRPG-CNRS, Université de Lorraine ⁴Woods Hole Oceanographic Institution