## Chondritic $\Delta'^{50/47}$ Ti in refractory olivines with highly unradiogenic $\Delta'^{26/24}$ Mg implies canonical $^{26}$ Al/ $^{27}$ Al<sub>0</sub> widespread in protoplanetary disc

**KATHRYN M. M. SHAW**, TIMOTHY GREGORY AND TIM ELLIOTT

University of Bristol

The spatial homogeneity of  $^{26}\text{Al}/^{27}\text{Al}$  in the early Solar System is debated due to apparent discrepancies between the absolute Pb-Pb and relative Al-Mg ages of chondrules<sup>[1]</sup>. The earliest formed solids — calcium-aluminium-rich inclusions (CAIs) — are often used as 't=0' for the Solar System, with an initial  $^{26}\text{Al}/^{27}\text{Al}$  ( $^{26}\text{Al}/^{27}\text{Al}_0$ ) of  $\sim 5\times10^{-5}$ . This approach has been questioned given CAIs are distinct from other Solar System materials in a range of nucleosynthetic isotope anomalies, *e.g.*,  $\mathcal{A}'^{50/47}\text{Ti}$ . Thus, the  $^{26}\text{Al}/^{27}\text{Al}_0$  of CAIs may not represent a common value for the proto-solar nebula as a whole.

A recent study using refractory forsterite grains (RFs) from chondritic meteorites showed unradiogenic  $\Delta'^{26/24}$ Mg signatures consistent with a chondritic reservoir with canonical  $^{26}$ Al/ $^{27}$ Al $_0 \sim 5 \times 10^{-5[2]}$ . This implies (1) RFs formed nearly simultaneously with CAIs and (2) if RFs and CAIs formed in different reservoirs, the reservoirs had similar  $^{26}$ Al/ $^{27}$ Al $_0$ .

To exclude a close spatial relationship between CAIs and the RFs — which would make the unradiogenic  $\Delta'^{26/24}$ Mg in the RFs unnoteworthy — we investigated the provenance of the RFs by measuring the mass-independent titanium isotopic compositions in the same grains analysed for  $\Delta'^{26/24}$ Mg. RFs are generally µmmm sized and contain only ~500 µg g<sup>-1</sup> titanium; our samples contained a median of 20 ng of titanium, requiring an exceptionally low-blank ion-exchange chemistry and careful measurement *via* multi-collection inductively coupled plasma mass spectrometry.

Our results show that RFs do not have elevated, CAI-like  $\Delta'^{50/47}\mathrm{Ti}$ , and we observe no correlation between  $\Delta'^{50/47}\mathrm{Ti}$  and  $\Delta'^{26/24}\mathrm{Mg}$ . Thus, RFs did not form in the same reservoir as CAIs. Therefore, the canonical  $^{26}\mathrm{Al}/^{27}\mathrm{Al}_0$  implied by the unradiogenic  $\Delta'^{26/24}\mathrm{Mg}$  of RFs shows a consistent  $^{26}\mathrm{Al}/^{27}\mathrm{Al}_0$  between spatially separated reservoirs, unrelated to the nucleosynthetic variability of other systems, pointing towards  $^{26}\mathrm{Al}/^{27}\mathrm{Al}$  homogeneity post-CAI formation.

[1]Bollard *et al.*, GCA, **260**, **62–83** (2019). [2]Gregory *et al.*, Sci. Adv., **6**, **eaay9626**, (2020).