Distinct potassium (K) isotope signatures in K-rich porewater from the Ulleung Basin (East Sea) reflect differences in marine silicate alteration rate

TZU-HAO HUANG 1 , XIN-YUAN ZHENG 2 , XIAOLE SUN 1,3 , SOISIRI CHARIN 2 , JI-HOON KIM 4 AND DR. WEI-LI HONG, PHD 1

Recent advances in K isotope (${}^{41}K/{}^{39}K$, $\delta^{41}K$) analysis have revealed a discrepancy between the $\delta^{41}K$ of seawater (ca. 0.12 ‰) [1] and Bulk Silicate Earth (ca. -0.45 ‰) [2]. The high δ^{41} K in seawater can not be explained by the terrestrial input through rivers (ca. -0.38 %) [3] or hydrothermal vents (-0.46 to -0.15 %) [4]. Marine sediments are suggested to contribute significantly to the global K cycle through marine silicate alteration, including lithogenic silicate (LSi) dissolution and clay formation. This study investigates the $\delta^{41}K$ of porewater ($\delta^{41}K_{pw}$) from two sites (2-1_1 and 2-6) in the Ulleung Basin. Both sites show increases in porewater [K⁺] concentration with depth (up to 14 mM) for the upper 150 meters below seafloor (mbsf), indicating net LSi dissolution. Despite the similar porewater [K⁺] trends, we detected an up to 0.7 % difference in $\delta^{41}K_{pw}$ between the two sites. The distinct $\delta^{41}K_{pw}$ signatures result from a 1.5-fold difference in net LSi dissolution rates, as shown by our numerical modelling results. The two sites show decreasing [K⁺] concentrations with depth below 150 mbsf, accompanied by consistently high $\delta^{41}K_{pw}$ (ca. 0.4 ‰). This observation is interpreted to reflect illitization that preferentially removes 39K from porewater. The calculated K isotope fractionation factors of clay formation range between 0.9982 and 0.9999, which agrees with the values suggested by the previous study [5]. Based on our findings and published data [5], we conclude that $\delta^{41}K_{pw}$ is primarily governed by the balance of LSi dissolution and clay formation.

- [1] Wang, K et al. (2020). ACS Earth Space Chem. 4, 1010–1017
- [2] Huang, T-Y et al. (2020). Geochim. Cosmochim. Acta 278, 122–136
- [3] Wang, K et al. (2021). Geochim. Cosmochim. Acta 294, 145–159
- [4] Zheng, X-Y et al. (2022). Earth Planet. Sci. Lett. 593, 117653
- [5] Santiago Ramos, DP et al. (2018). Geochim. Cosmochim. Acta 236, 99–120

¹Stockholm University

²University of Minnesota - Twin Cities

³Institute of Oceanology, Chinese Academy of Sciences

⁴Korea Institute of Geoscience and Mineral Resources