Calcium carbonate dissolution in coastal and shelf sediments

CEDRIC GOOSENS¹, SEBASTIAAN VAN DE VELDE² AND FILIP J. R. MEYSMAN¹

¹University of Antwerp ²University of Otago

The balance between calcium carbonate (CaCO₃) precipitation in the surface ocean and dissolution in the deep ocean and seafloor regulates atmospheric carbon dioxide (CO₂) levels on thousand-year timescales. CaCO₃ precipitation removes alkalinity and releases CO₂ to the atmosphere, whereas dissolution produces alkalinity, driving atmospheric CO₂ uptake. Most research focuses on CaCO₃ dissolution in the deep-sea water column and seafloor, or in high carbonate environments such as reef sands. Coastal and shelf environments on the other hand have received less attention, even though these shallow regions equilibrate rapidly with the atmosphere and could provide a CO₂ feedback on decadal timescales.

Here, I present a compilation of CaCO₃ dissolution rates from coastal and shelf sediments. Data suggests that the CaCO₃ content of the sediment itself was of minor importance, but instead the rate of aerobic respiration, which acidifies the porewater, determined the CaCO₃ dissolution rate. As such, oxygenated coastal sediments that receive a high organic matter input, such as those found in reef and seagrass systems, exhibit the highest dissolution rates per surface area. My updated CaCO₃ budget shows that CaCO₃ export from shelves to the deep sea is much higher than previously estimated. Accordingly, an important fraction of CaCO₃ produced on the shelf is subsequently transferred from the short-term to the long-term CO₂ feedback.