Fe, Mg and Si isotope compositions of Ryugu particles

PROF. MARTIN BIZZARRO, PHD 1 , MARTIN SCHILLER 1 AND TETSUYA YOKOYAMA 2

¹Centre for Star and Planet Formation, Globe Institute, University of Copenhagen ²Institute of Science Tokyo

The Hayabusa2 spacecraft returned samples from the primitive Cb-type asteroid Ryugu. From bulk chemistry and isotopes, Ryugu samples are closely related to CI carbonaceous chondrites [1]. However, Mg isotopes show that Ryugu has a μ^{26} Mg* excess of 3.8±1.1 ppm relative to CIs [2]. This difference is well-resolved and cannot be explained by in situ 26 Al decay given their 27 Al/ 24 Mg ratios. Instead, Ryugu and CIs must have formed from material with different initial 26 Al/ 27 Al ratios or distinct Mg isotopes. To investigate Ryugu's μ^{26} Mg* excess, we measured Fe, Mg, and Si isotopes in four small (<1.6 mg) Ryugu particles, namely A0319, A0348, A0369, and A0376

Three particles define a homogeneous μ^{54} Fe value of 4.1±2.4 ppm, similar to CIs and earlier Ryugu data [3, 4]. In contrast, A0369 records an anomalous μ^{54} Fe value of 40.4±3.1 ppm, likely reflecting heterogeneous sampling of an anomalous metal phase, as μ^{54} Fe excesses have been identified in early Ivuna CI chondrite leachates [3]. The three CI-like particles also define an average µ³⁰Si value of 36.9±3.4 ppm, identical to CIs [5]. A0369 records a more anomalous μ³⁰Si value of 45.1±2.5 ppm, possibly reflecting heterogeneous sampling of an unknown phase. Present-day μ²⁶Mg* values of Ryugu particles range from 6±1.8 ppm to 8±1.9 ppm, agreeing with earlier data [2]. Using each particle's ²⁷Al/²⁴Mg, we calculate initial (T=0) μ²⁶Mg* values of -3.5 ± 3.5 ppm to 11 ± 2 ppm, emphasizing Ryugu's μ^{26} Mg₀ excess. The 15±4 ppm range in $\mu^{26} Mg_0$ is defined by particles with CIlike $\mu^{30} Si$ indicating that $\mu^{26} Mg_0$ heterogeneity is unrelated to Siisotope variability. Since nucleosynthetic models predict much larger Si effects with Mg heterogeneity [2], our data confirm that Ryugu's μ²⁶Mg excess is radiogenic, reflecting a higher [²⁶Al/²⁷Al]₀ ratio in its precursors. These data support ²⁶Al heterogeneity in the early disk, indicating that Ryugu formed from material with a greater [26Al/27Al]₀ than any other CCs.

[1] Yokoyama, T. et al. 2023, Science, 379, 7850. [2] Bizzarro. M. et al. (2023) *ApJL* 958, L25. [3] Schiller, M. et al. (2020) *Science Advances* 6, eaay7604 [4] Hopp, T. et al. (2022) *Science Advances* 8, eadd8141. [5] Onyett, I.J. et al. (2023) *Nature* 619, 539.